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1 Integration im RY

Wir wollen in diesem Abschnitt unsere Kenntnisse zur Integration einer Variable er-
weitern. In der Vorlesung Mathematik fir Studierende der Physik I ist das sogenannte
Riemann-Integral eingefiithrt worden, welches jedoch nicht ,vollstandig“ ist in Bezug auf
Vertauschbarkeit von Integration und punktweise konvergenten Funktionenfolgen.

Um diese Eigenschaften zu verbessern, werden wir hier eine andere Herangehensweise
an das Integrieren vornehmen. Ziel ist es

e das Volumen fiir eine moglichst groBe Klasse von Teilmengen des RY zu bestimmen.

e das Integral fiir eine moglichst grofie Klasse von Funktionen f: A — R, A C RY
zu definieren.

1.1 Halboffene Quader und ihre Zerlegung

Definition 1.1. Fiir a,b € R" schreiben wir (a, b] := (ay,b;] X ... X (ay, by] und nennen
Q@ := (a,b] einen (halboffenen) Quader. Die Zahl

Q| := (by —ay) ... - (by —ay), fallsa; <b; fur alle
o falls a; > b, fiir ein i (d.h. falls Q = &)

heilt Volumen von Q. Die Menge aller halboffenen Quader in RY bezeichnen wir mit
Q.

Notation 1.2. Zwei Mengen A, B heiflen disjunkt, falls AN B = &. Sind A und B
disjunkt so schreiben wir A J B als die disjunkte Vereinigung der Mengen A und B.

Satz 1.3. Seien Q, K € QN. Dann gilt:
(a) QN K € Q.
(b) Es gibt endlich viele disjunkte Q1,...,Qr € QN mit Q\ K = Ule Q;.

Beweis. (a): Ist Q = (a,b] und K = (¢,d] mit a,b,c,d € RN, so ist Q N K = (x,9],
z,y € RY gegeben durch z; = max{a;,¢;} und y; = min{b;,d;}, i =1,..., N.

(b): Wir diirfen zundchst annehmen, dass K C @ gilt. Andernfalls konnen wir K unter
Betrachtung von (a) durch @ N K ersetzen. Ferner sei ohne Einschrénkungen @) # @ # K.
Wir argumentieren nun per Induktion nach N:

N = 1% Sei @ = (a,b] und K = (¢,d] mit a,b,¢,d € R, a < ¢ < d < b. Dann ist
Q\ K = (a,c]U(d,b].



»N > 1¢: Angenommen die Aussage gilt fiir ein (N — 1) € Ny. Wir schreiben @ :=
Q1 xQyund K = K; x Ky mit Q1, K, € Q' und Q,, Ky € QV~!. Dann ist K; C Q; und
K5 C Q5 und wir haben die disjunkte Vereinigung

Q\K =[Q1\ Ki] x [Q2\ Ko] U [Q1\ K] x Ky UKy x [Q\ K.

Geméf dem Fall N = 1 kénnen wir @; \ K7 = A; U Ay schreiben mit disjunkten
Ay, Ay € Q. Ferner finden wir nach Induktionsannahme eine Zerlegung

Q2 \ Ko = BiU...U B, mit disjunkten B; € QN
Somit ist

i=1,2 i=1,2 j=1,..k

Korollar 1.4. Seien Q,Q1,...,Q, € QY. Dann existieren endliche viele disjunkte
Ki,...,Kp, € QN mit Q\ (Q1U...UQ,) =K U...'UK,,.

Beweis. Wir werden diese Aussage per Induktion zeigen. Fiir n = 1 ist die Aussage wahr
nach Satz 1.3(b). Sei nun (n— 1) € N derart, dass die Aussage gilt. Dann existieren (nach
Induktionsbehauptung) disjunkte K7, ... K,,, € Q" und (nach Satz 1.3(b)) disjunkte
Ll,...,Lm2 S QN mit

Q\(Q1U...U@n1UQn) =Q\ (Q1U...UQn1)NQ\Qy
=1 j=1 :_
mit M;; := K; N L; € QN nach Satz 1.3(a), fir alle i = 1,...,m; und j = 1,..., ma.
SchlieBlich gilt fir (i,5) # (k,0), i,k =1,...,mq, j,0=1,...,my

da entweder ¢ # k und damit K; N K} = @ oder j # ¢ und damit L; N L, = @ gilt. Somit
sind die M,;; paarweise disjunkt. Es folgt die Behauptung. O]

Satz 1.5. Seien Qi € QV, k € N disjunkte Quader derart, dass Q := J;—, Qi ebenfalls
in QN liegt. Dann gilt

Q| = Z|Qk] (o-Additivitat des Quadervolumens)
k=1

Die Aussage gilt auch fiir endliche Vereinigungen indem man fast alle Qg als leer annimmit.

Beweis. Aufwéandig. Siehe [8]. O



Korollar 1.6. Sei Q € QY und seien Q1,...,Qr € QV disjunkte, in Q enthaltene
Quader. Dann ist

k
> lex <@l
n=1

Beweis. Nach Korollar 1.4 ist Q \ (Q1U...UQ) = J1 U... U J, mit disjunkten Quadern
J; € QY. Dies liefert die disjunkte Vereinigung Q = Q... J QU J; ... U J, und mit

Satz 1.5 folgt
k V4 k
QI =1l + 11 = Y|l
i=1 j=1 i=1

]

Korollar 1.7. Seien Qi € Q~, k € N und sei M = J,—, Qx. Dann existieren disjunkte
Quader J, € QN, k € N mit M = ;2 Jp und > o |Jk| < 3o, |Qkl, wobei in dieser
Ungleichung der Wert co zugelassen ist.

Beweis. Nach Korollar 1.4 existiert fiir jedes k € N eine Zerlegung der Form

Qk\(Qlu...UQk_1>ZJMU...UJM(k)
in disjunkte Quader Jy;, i = 1,...,¢(k). Somit ist

M = UQk\(QlU--'Uqu): UUsz
k=1 k=1 i=1
und diese Vereinigung ist ebenfalls disjunkt. Weiterhin gilt ng? | Jki| < |Qk| fur alle k
nach Korollar 1.6, also

o0 oo (k)
SN =D 0D |l
k=1

k=1 i=1

]

Satz 1.8. Jede Offene Menge D C RY lisst sich als disjunkte Vereinigung abzihlbar
vieler Quader aus QN schreiben.

Beweis. Sei ) die Menge der in D enthaltenen Quader (a, b] mit a,b € QY. Diese Menge
ist abzéhlbar, da Q und somit QV abzahlbar ist. Wir behaupten nun

(1.1) p=J@
Qeq

,2 ist trivialerweise erfiillt.

,C“ Seix € D. Da D offen ist, existiert m € N derart, dass y € D fiir alle y € RY mit
|z — yloo < % Firi=1,...,N wahle nun y; € QN [mz — %,xl) und setze z; 1= y; + %
Dann liegen y = (y1,...,yn) und 2 = (21,...,2,) in QY und es gilt z € (y,2] C D. Es
folgt (y,2] € Q und somit ist x € Uoeo @-

Insgesamt folgt (1.1) und mit Korollar 1.7 erhalten wir schliellich auch eine disjunkte
Zerlegung, wie behauptet. [



1.2 Das auBere Lebesguemall und Nullmengen

Definition 1.9. Im Folgenden sei R := R U {#o00}.

(a) Wir vereinbaren folgende Rechenregeln in R:

a £ 00 = £o0 Va € R
00 + 00 = 0
—00 — 00 = —00
+oo fiir a € (0, 0]
a-(to0) =< Foo fiirae|[—o00,0)
0 fira=20

Nicht definiert ist allerdings oo — oo!

(b) Wir definieren a < oo fiir alle a € RU {—o00} und a > —oo fiir alle a € RU {o0}.
Ferner sei |+oo| := o0,

(¢) Fiir A C R setzen wir

D falls co € A
A= sup(ANR) fallsoco ¢ A
) — 0 falls —co € A
infA=<
inf(ANR) falls —co ¢ A

(d) Ist (ax)x eine Folge in R so sei

lim inf a;, = sup inf a,,
k—o0 keN N>k

limsup ay = inf supa,
k—o0 keN n>k

Falls diese beiden tibereinstimmen, schreiben wir limy,_, ., a fiir diesen gemeinsamen
Wert.

(e) Ist (ay)x eine Folge in [0, c0] so setzen wir

Diese Summe nimmt nach (a) bereits dann den Wert oo an, wenn mindestens eines
der a; = oo ist.

Mit dieser Definition gilt der folgende Satz



Satz 1.10 (Doppelreihensatz). Sind a;; € [0,00] firi,j € N, so ist

o o0 o o oo
E E Qjj = E E Qjj = E Qij,
j=1 i=1 i=1 j=1 i,7=1

wobei die letzte Summe fir eine beliebige Abzdhlung der (i,7) € N x N steht.

Definition 1.11. Fiir A C R” sei das duflere Lebesquemafs von A definiert durch

X (A) mf{Z@k

Satz 1.12. Seien A, B, A, CRY, k € N. Dann gilt:

Qr € QY fir k € N, ACUQk} € [0, o0].
"(4) =
"(9) =
*(A) < A*(B), falls A C B.

(a) A
(b) A
(c) A
(d) A" (UrZs Ar) < 2205 A7 (Ak).

Beweis. (a): ist klar.

(b): Setze Q, = @ € QY fir k € N, dann ist & C |Jo, Qx und >~ ,|Qx| = |2| = 0.
Es folgt \*(@) = 0.

(c): Sind Q. € QN fiir k € Nmit B C |J,2, Qx, so gilt auch A C B C ;7 Q. Daher
folgt A*(A) < A*(B) bereits nach Definition von \*.

(d): Sei € > 0. Nach Definition von A\*(Ay) existieren Qr; € Q~, j € N mit

Ay wmd Y IQul < A (A + ; fiir alle k € N.

j=1 j=1

Da die Qj, k,j € N wieder eine abzéhlbare Menge von Quadern bilden und UZO:1 A, C
U;jczl Qr; ist, folgt

<U Ak) < Z‘Qk]‘Satzllo

]k 1
A*(Ap) +€ZZ b Z/\*(Ak)-i-g
k=1

Nun war € > 0 beliebig gewahlt, also folgt (d). O

Sl <30 (V0 + 5)
k= k=1

1 =1 =

k=1

Satz 1.13. Fir Q € QN gilt \*(Q) = |Q|.



Beweis. Nach Definition von \* gilt
(1.2) A(Q) <1Q| (setze Q1 =Q und Qp = @ fir k =2,3,...)

Sei nun @, € @V, k € N beliebig mit Q@ C J, Qr und sei Qy = Q; N Q fiir k € N.
Dann gilt @ = (J,—; @k und |Qx| < |Q4| fiir alle k. Nach Korollar 1.7 existieren disjunkte

M, € QN mit
Q= U M, und Zle’ < Z|Qk’
k=1 k=1 k=1

Mit Satz 1.5 ergibt sich also

QI = 1M < |Qk < |Qxl.
k=1 k=1

k=1
Nach Definition von A\* folgt demnach |Q| < A\*(Q). Mit (1.2) folgt die Behauptung. [

Definition 1.14. Eine Menge A C R heifit (N-dimensionale) Nullmenge, falls \*(A) =
0 ist. Dies gilt genau dann, wenn fiir alle ¢ > 0 Quader Q;, € QV, k € N existieren mit

AC U, Qrund 3, [Qk| <e.
Satz 1.15.

(a) Ist A CRYN eine Nullmenge und B C A, so ist auch B eine Nullmenge.
(b) Sind Ay, k € N Nullmengen im RN, so ist auch |Jyoy Ak eine Nullmenge.
Beweis. (a) folgt aus Satz 1.12(c), und (b) folgt aus Satz 1.12(d). O

Beispiel 1.16. (a) Fiir alle z € RY ist {z} C R" eine Nullmenge, denn fiir alle ¢ > 0
gilt
{ZL‘} - (1‘1 —6,1‘1] X ... X (ZL‘N —E,I’N] = QE € QN.

Nun gilt |Q.] = eV — 0 fiir ¢ — 0 und damit ist {z} eine Nullmenge.

(b) Jede abzéhlbare Teilmenge des RY ist eine Nullmenge nach (a) und Satz 1.15(b).
Insbesondere ist Q" eine Nullmenge in RY.

(c) R¥=1 x {0} C RY ist eine Nullmenge, denn:

RN x {0} = D([k x {0}) mit I, := (—k, k] x ... x (—k, k] € Q¥ 71,

k=1

wobei
N (I x {0}) < inf| I x (—¢,0]| = 125(%)“15 =0

fir alle k gilt und somit I x {0} eine Nullmenge ist. Satz 1.15(b) liefert dann die
Behauptung.



Ein Wiirfel ist ein Quader, dessen Seiten alle gleich lang sind.

Lemma 1.17. Ist Q € QV, so existieren endlich viele Wiirfel Wy,..., Wi, € QN mit
k k
cUw:  wnd QI <) Wi <2V(Q).
i=1 =1

Beweis. Einfache Ubung. O

Definition 1.18. Fiir eine Menge A C RY setzen wir diam(A) := sup{|z—y|s | z,y € A}
fir den Durchmesser der Menge A.

Satz 1.19. Sei A C RV,

(a) A ist genau dann eine Nullmenge, wenn fiir alle e > 0 Mengen Ay CRY, k€ N
existieren mit A C | Jpo Ap und Y o (diam A;)N < e.

(b) Ist A eine Nullmenge und f: A — RN Lipschitzstetig, so ist auch f(A) CRY eine
Nullmenge.

Beweis. (a): ,=“: Sei A eine Nullmenge, so existieren (nach Definition) zu jedem £ > 0
Quader Q; € QV, k € Nmit A C U, Qx und Y 77, |Qx| < w7z Mit Lemma 1.17
folgt, dass es fiir jedes £ endlich viele Wiirfel W4, ..., Wy € QN gibt mit Q;, C U?:(li) Wi
und S| < 2V|Qk|. Wegen [Wii| = N=N/2(diam Wi,V folgt

0o oo n(k) oo n(k)
S VY = NV S = 30 diam W) = 3 (dinm A
k=1 k=1 j=1 k=1 i=1 k=1

wo wir eine Abzdhlung der Wy, als A mit nur einem Index schreiben.
,<“: Seien ¢ > 0 und Ay CRY, k € Nmit A C (J;2; Ap und Y777, (diam A;)"
Bezeichne mit A einen Wiirfel mit Kantenldange diam Ay, so dass Ay C Ay gilt. Dann 1st

Da nun ebenfalls A C [ J;2, Ay gilt, folgt

) < Z\Ak| = Z (diam Ag)Y < ¢
k=1

WEeil € beliebig gewahlt war, ist A eine Nullmenge.
(b): Ubung. O

Bemerkung 1.20. (a) Betrachte f: RY — RY affin linear, d.h. f(z) = Tz + ¢ mit
T € RV*N ¢ e RV, so ist f Lipschitzstetig (siche Mathe II) und bildet damit
Nullmengen auf Nullmengen ab. Mit Beispiel 1.16(c) folgt direkt, dass zg + V' eine
Nullmenge ist fiir jeden Untervektorraum V C RY mit dim(V) < N und jedes
9 € RN, da 29 +V C f(RN"! x {0}) fiir eine geeignet gewihlte affin lineare
Abbildung f ist.



(b) Ist D C RY offen, f € C*(D,RY) und A C D eine Nullmenge, so ist auch f(A) C
RY eine Nullmenge. Dies lisst sich wie folgt begriinden: Zunichst beobachten
wir, dass fiir jede kompakte Menge K C D gilt, dass f eingeschrankt auf K
Lipschitzstetig ist. Demnach ist f(K N A) eine Nullmenge, da AN K C A eine
Nullmenge ist. Nun lasst sich D durch abzéhlbar viele kompakte Mengen in D
tiberdecken und dies liefert die Behauptung.

(c) Sei D C R* offen, N > k und f € C'(D,R""*), dann ist Graph f C R" eine
Nullmenge. Dies folgt mit Aussage (b) unter Verwendung der Abbildung f €
C'(D x RN=F RYN) definiert durch f(z,y) = (x, f(z)). Dann ist D x {Oy_x} eine

Nullmenge und also auch Graph f = f(D x {Oy_x}). Man kann sogar zeigen, dass
der Graph einer Funktion bereits dann eine Nullmenge ist, wenn f nur stetig ist.

(d) Mit Hilfe von (a) und (c) lasst sich zeigen, dass jede k-dimensionale Untermannigfal-
tigkeit des RY, k < N, eine Nullmenge ist, da diese sich lokal als affin lineares Bild
eines Graphen darstellen ldsst. Man muss dann nur zeigen, dass jede Uberdeckung
der Untermannigfaltigkeit mit solchen Graphendarstellungen eine abzahlbare Teil-
iiberdeckung besitzt. Dies ist eine wichtige Bemerkung bei der Konstruktion von
sogenannten ,,Oberflichenintegralen®.

1.3 Messbarkeit und Lebesguemal

Bemerkung 1.21. Wir haben im vorherigen Abschnitt das duflere Lebesguemafl ken-
nengelernt. Um diesen Wert als ein Volumen zu interpretieren, sollte gelten: Sind A, B
disjunkt, dann ist vol(A U B) = vol(A) + vol(B). Fur das duflere Lebesguemaf gibt es
jedoch disjunkte Mengen A, B C RY mit \*(A W B) < A*(A4) + A*(B). Solche Mengen
lassen sich jedoch nur mit dem Auswahlaziom der Mengenlehre konstruieren. Im Folgen-
den wollen wir uns also auf eine Klasse M* von Teilmengen des RY beschrinken fiir die
stets gilt: Sind 4, € MY, k € N, disjunkt, dann ist A* (e Ar) = Dopeq A" (Ag).

Definition 1.22. Eine Teilmenge A C RY heifit Lebesque-messbar, falls fiir alle Teil-
mengen Z C RY gilt:
N(Z)=XN(ZNA)+ X (Z\A).

Die Klasse der Lebesgue-messbaren Teilmengen des RY bezeichnen wir mit M"Y .

Bemerkung 1.23. Fiir alle Teilmengen A, Z C RY gilt \*(Z) < \*(ZNA)+ X (Z\ A)
nach Satz 1.12(d).

Satz 1.24. Sei A C RY. Dann gilt:
(a) A Nullmenge = A € MY, d.h. A ist Lebesque-messbar.

(b) Ae QN = Ae MV,

10



Beweis. (a): Sei A eine Nullmenge und Z C RY. Dann ist

Satz 1.12(c)

N(Z) = XN(Z\NA)=X(ZNA)+N(Z\ A).
=0
Nach Bemerkung 1.23 folgt die Gleichheit.
(b): Sei A € QN und Z C RY. Wegen Bemerkung 1.23 geniigt es
(1.3) N(ZNA)+X(Z\A) <X(2)
zu zeigen. Sei dazu € > 0 und seien Q € QV, k € Nmit Z C (o Qr und Y-, Qx| <
N (Z) 4 €. Nach Satz 1.3(b) ist Qr \ A = Ui(:k% Ji; mit disjunkten Jy; € QY. Somit ist
ZNACUen(@enA) und Z\ A C Uy U) T, also

1(k)
N(Z0A) +X(ZN\NA) < 1A+ 1l | = 10k < X (2) +e.
keN =1 keN
Da ¢ beliebig gewéhlt war, folgt (1.3). O

Definition 1.25. Seien (2 eine beliebige Menge und P((2) die Potenzmenge von §2 (das
System aller Teilmengen von §2).
(a) Ein System M C P(2) von Teilmengen von 2 heifit o-Algebra auf 2, wenn gilt:
(i) @ e M,
(i) Ae M= A:=Q\Ae M,
(111) Ay EM, keN= UzozlAk e M.
Das Paar (2, M) nennt man dann Messraum oder messbarer Raum, und die
Elemente von M heilen messbare Mengen.
(b) Eine Abbildung p: M — [0, 0o] auf einer o-Algebra M heifit (positives) Mafi, wenn
gilt:
(i) n(@) =0,
(ii) Sind A € M, k € N disjunkt, so gilt

i (U Ak> = Z w(Ayg) (o-Additivitdt).
k=1 k=1

Das Tripel (€2, M, 1) nennt man dann Mafraum.

Hauptsatz 1.26. Das System MY der Lebesque-messbaren Teilmengen des RY bildet
eine o-Algebra auf RY. Die Einschrinkung AN : MY — RU{oo} der Mengenfunktion \*
ist ein Maf. MY wird auch als die Lebesguesche o-Algebra bezeichnet (andere Schreib-
weise: M(RY)) und NV heifit (N-dimensionales) Lebesguemaf. Wenn die Dimension N
klar ist, schreiben wir manchmal auch X\ statt \V.

11



Beweis. Wir zeigen die geforderten Eigenschaften aus Definition 1.25.
(a)(d): Esist @ € MY da X\ (Z) = X(@) + X (Z2) = M (Z N @)+ \(Z )\ @) fir alle
Z € P(RY) gilt.
(ii): Sei A € M¥. Dann ist auch das Komplement A¢ := RY \ A € M¥ denn fiir
beliebiges Z C RY gilt
N(Z)=XN(ZNA) +X(Z\A) =X (Z\ A°) + X\ (Z N A°).
(iii): Behauptung 1: Sind A, B € M" soist auch ANB € M¥. Sei dazu Z € P(R")
beliebig. Wegen A € MY und B € M¥ ist
N(Z)=X(ZNA)+X(Z\NA) =X(ZNANB)+ X (ZNA)\B)+ X (Z\ A)
>N(ZNANB)+X(Z\ (AN B)),
wegen
ZNAUZNANB=ZN(A°U(ANB%))=2ZnN (AU (B°~\ A9)
=ZN(A°UB°)=Z~(ANB)

und der Eigenschaft Satz 1.12(d) von \*. ,<“ gilt sowieso, also folgt AN B € MY. Aus
(ii) und Behauptung 1 folgt

Behauptung 2: Sind A, B € MY, so auch AU B = RY \ (4¢N B°). Sind ferner A
und B disjunkt, so gilt

MZN(AUB)) =X (ZNA)+ M\ (ZNB)  firalle Z € P(RY).

Letztere Gleichheit folgt, da mit Z’ := Z N (A U B) entsprechend der Definition der
Messbarkeit von A und B C A€ folgt:

N(ZN) =X (Z' A+ X (Z'\A) = X (ZNA)+ X(ZN B).
Behauptung 3: Sind A, € MY, k € N disjunkt, so ist A := (J, oy Ax € MY, und es
gilt
(1.4) N(ZNA) =) X(ZNA) fiir alle Z € P(RY).
k=1

Dies sieht man so: Wegen Behauptung 2 ist A*(Z N ;- Ax) = > _pey A (Z N Ag). Mit
der Monotonie von \* folgt

N (Z) = )\*(Zﬂ UAk> +X“<Z\ U Ak> > N(ZNA)+N(Z\A) fiir meN.
k=1 k=1 k=1
Durch Grenziibergang m — oo erhalten wir

N (Z) > ix*(zm A+ N (Z\A) >N (ZNA) + N (Z\A) >\ (2)

mit Hilfe von Satz 1.12(d). Also gilt tiberall Gleichheit, und dies zeigt Behauptung 3.
(b)(ii): Folgt aus (1.4) mit Z = R". Die anderen MaBeigenschaften sind fiir \*| v
trivialerweise erfiillt. O

12



Korollar 1.27. Jede offene und jede abgeschlossene Teilmenge von RY ist messbar.

Beweis. Ist A C RY offen, so ist A = [J;—, Qr mit Quadern @, € Q, k € N nach
Satz 1.8. Dabei ist Q) € MY fiir alle k nach Satz 1.24. Mit Definition 1.25(a)(iii) folgt
Ae MV

Mit Definition 1.25(a)(ii) folgt schlieBlich, dass auch abgeschlossene Teilmengen messbar
sind. O

Korollar 1.28. Seien A, B, A, € MY, k € N. Dann gilt:
(a) Die Mengen AN B, A\ B und oy Ak sind messbar.
(b) Ist BC A und A\(B) < oo, so gilt

MA\ B) = MA) — A(B).

(¢) Gilt Ay, C Agyq fiir alle k € N, so ist

A (U Ak) = lim A(Ap).

keN

(d) Gilt \(Ay) < oo und Agy1 C Ay fiir alle k € N so ist

A <ﬂ Ak> = lim A(Ap).

keN

Beweis. Ubung. [

Bemerkung 1.29. Ist a,b € R, a < b, so sind [a, ], (a,b], [a,]), (a,b) € M. Ferner
sind {a} und {b} Nullmengen. Es folgt

Ala, b) = Al(a, b)) = Alla, b)) = Al(a, 1)) = b —a.
Analog gilt: Sind a,b € R, so sind {a} und {b} Nullmengen und es ist A((a,b]) = |(a, b]).

Proposition 1.30. Ist I eine Indexmenge und M;, i € I eine Familie von o-Algebren
auf 2, so ist auch
M = ﬂ Mz
iel

eine o-Algebra.

Beweis. Ubung. O]
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Definition 1.31. Sei O das System der offenen Teilmengen von RY. Nach Propositi-

on 1.30 ist dann
BN = m M

M o-Algebra auf RY
OCM

eine o-Algebra auf RY, die kleinste, die alle offenen und somit auch alle abgeschlossenen
Teilmengen von RY enthilt. Diese heifit die Borelsche o-Algebra auf RV, und ihre
Elemente heiflen Borel-messbare Teilmengen von RY .

Bemerkung 1.32. Es gilt BY € M¥, wegen Korollar 1.27. Man kann zeigen, dass diese
Inklusion strikt ist, dass also nicht alle Lebesgue-messbaren Mengen Borel-messbar sind.
Im Folgenden werden wir jedoch nur Lebesgue-Messbarkeit betrachten und deshalb statt
,Lebesgue-messbar® einfach , messbar” sagen.

1.4 Messbare Funktionen und Elementarfunktionen

Definition 1.33. Sei B € M" und f: B — R eine Funktion.

(a) Fiir ¢ € R definieren wir
{f>c}={xeB| f(x)>c} CB.
Analog ,>, =, <, <“ Insbesondere ist dann {f = c} = f~(c).

(b) f heifit messbar, falls eine der folgenden dquivalenten Bedingungen gilt:
(i) {f>c} e MY firallece R
(i) {f <c} € MY fir allec € R
(iil) {f <c} e MY fiir allec € R
(iv) {f >c} € MY fir allece R
Beweis der Aquivalenz. (i) = (ii)“: Fiir c € Rist {f < ¢} = B\ {f > ¢} € M" nach
Korollar 1.28(a). B
,(ii) = (iii)“: Sei ¢ € R. Ist ¢ = —oc0, so ist {f < ¢} = @ € MY, Ist ferner ¢ > —o0
und (c¢x)r € R eine Folge mit ¢, < ¢y < ¢ fur alle £ und limy_ o ¢ = ¢, SO ist

{f <t =U{f < e} € MY nach Definition 1.25(a)(iii)
,(1ii) = (iv)“ und ,(iv) = (i)“ beweist man analog. O

Bemerkung 1.34. Sei B € MY und f: B = R.

(a) Ist f messbar, so ist {f = c} = {f > ¢} N {f < ¢} € M* nach Korollar 1.28(a)
fir alle ¢ € R.

14



(b) Definiert man die triviale Fortsetzung f von f durch

f(x), z€B

0, sonst,

A RY 5 R, f(z)= {

so gilt: f messbar < f messbar. Dies folgt da fiir ¢ € R gilt:

{(f>cy={f>c}, fallsc>0
{f>ct={f>c}JnB und {f>c} ={f>cJU®RY\B), fallsc<0.

Lemma 1.35. Es sei B C R ein Intervall, f: B — R. Dann gilt

(a) Ist f monoton wachsend, d.h. fir x,y € B, x <y folgt f(x) < f(y), dann ist f
messbar.

(b) Ist f monoton fallend, d.h. fir x,y € B, x < y folgt f(z) > f(y), dann ist f
messbar.

Beweis. Da Intervalle als eindimensionale Quader aufgefasst werden konnen ist B messbar.
Es geniigt dann zu erkennen, dass fir ¢ € R die Menge {f > ¢} fiir f monoton fallend
bzw. {f < ¢} fiir f monoton wachsend messbar sind (Ubung). O

Satz 1.36. Ist B C RY messbar und f: B — R stetig, so ist f messbar.

Beweis. Sei ¢ € R. Aufgrund der Stetigkeit von f ist {f > ¢} offen in B, d.h. es existiert
eine offene Teilmenge C' C RY mit {f > ¢} = BN C. Da B,C € MY gilt, folgt
{f>cte MV O

Satz 1.37. Seien B € MY, a € R und seien f,q: B — R messbar. Dann gilt
(a) af: B — R ist messbar.

(b) Ist {f =00} N{g= -0} =0 ={f=-00}N{g=00}, s0ist f+g: B—>R

wohldefiniert und messbar.
Beweis. Ubung. O
Satz 1.38. Sei B € MY und seien fi: B — R, k € N messbare Funktionen. Dann gilt:

(a) Die auf B punktweise definierten Funktionen f := infy fr und F := sup,, fy sind
messbar. Daraus folgt dann direkt die Messbarkeit von min f;, und max f;, bei endlich
vielen Funktionen.

(b) Die auf B punktweise definierten Funktionen g := liminfy fp und G := lim sup,, fx
sind messbar.
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Beweis. (a): Fiir alle ¢ € R ist
{fzct={frizct e M
Foemy

und {F < ¢} = N {fr < c} € MV,
(b): Nach (a) ist g := inf;>, f; messbar fiir alle £ € N und damit auch g = sup,cy gs.

Ahnlich folgt die Messbarkeit von G. O
Korollar 1.39. Sei B € MY und f: B — R messbar. Dann sind auch f* := max{f,0},
[~ = —min{f,0} und |f| = fT + f~ messbar.

Beweis. Dies folgt direkt aus Satz 1.38(a) und Satz 1.37(b). O

Bemerkung 1.40. Ist B € M" und f;, := B — R eine monotone Funktionenfolge, d.h.
fr(z) < fr1(2) fir alle z € B ((fx)r ist monoton wachsend, f ) oder fi(z) > fri1(z)
fur alle z € B ((fx)r ist monoton fallend, fi ), so existiert der punktweise Grenzwert
f(z) == limye fx(z) fir alle x € B: Ohne Einschrankungen kénnen wir annehmen,
dass (fx)r monoton wéchst. Ist die Folge (fx(x))r nach oben beschrankt, so existiert
der Grenzwert limy o, fr(z) =: f(z)'. Ist (fi(z))r nicht nach oben beschrinkt, so
ist wegen der Monotonie limy_,o, fr(z) = oo € R. Folglich existiert eine punktweise
Grenzwertfunktion f: B — R. Nach Satz 1.38(b) folgt, dass f messbar ist.

Definition 1.41. Sei B C R" und sei A eine Aussage iiber die Punkte aus B. Wir sagen
LA gilt fast dberall (kurz: f.4i.) auf B, wenn es eine Nullmenge M C B derart gibt, dass
A fir alle x € B\ M gilt. Ist B aus dem Zusammenhang bekannt, so sagen wir kurz: ,, A
gilt f.i“ (ublich ist auch die Schreibweise , A gilt A-f.i1.).

Satz 1.42. Sei B € MY und seien f,g: B — R. Ist f messbar und f = g f.i. auf B,
so ist auch g messbar.

Beweis. Sei M C B eine Nullmenge mit f = g auf B\ M, und sei ¢ € R beliebig. Dann
ist

{g>c={f>cI\M|U {g>c}nM) ¢ M". O
—— —_——
eEMN eMN | da Nullmenge

Korollar 1.43. Seien B € M"Y und f: B — R und seien f,: B — R, k € N messbar
mit fr. — f punktweise f.1i. auf B. Dann ist auch f messbar.

Beweis. Sei M C B eine Nullmenge, so dass g = lim_,, fr auf B ~. M existiert. Nach
Satz 1.38(b) ist g dann messbar auf B ~\. M, und die triviale Fortsetzung g ist messbar
auf RY, nach Bemerkung 1.34(b). Es ist einfach zu sehen, dass dann auch g|z messbar
ist, und wegen g|g = f f.i. liefert Satz 1.42 die Behauptung. [

1Satz von Bolzano-Weierstra$: Jede monoton steigende, nach oben beschrinkte Folge in R hat einen
Grenzwert
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Definition 1.44. (a) Fir A C R heifit

1, zv€ A

A 7R, lal@) {O, ré¢ A

Indikatorfunktion (oder charakteristische Funktion) von A. Offensichtlich ist 14
genau dann messbar, wenn die Menge A messbar ist.

(b) Sei B € RY messbar. Eine messbare Funktion f: B — R heifit Elementarfunktion,
wenn sie nur endlich viele Werte annimmt und die Menge {x € B | f(x) # 0}
beschrénkt ist. Wir setzen £(B) := {f: B — R | f Elementarfunktion}.

Bemerkung 1.45.

(a) Speziell: Die sogenannte Dirichletfunktion ist gegeben durch die Indikatorfunktion
der Menge Q, 1. Diese ist nicht Riemann-integrierbar. Es gilt jedoch 1 = 0 f.1.,
da Q C R eine eindimensionale Nullmenge ist.

(b) Ist B e MY und f € £(B), so ist f = > yer(p) Y1{r=y und dies ist eine endliche
Summe. Insbesondere existieren fiir jedes f € £(B) endlich viele messbare Mengen
Ay,...,A, CBund aq,...,qa, € R mit

AMA;) <o firi=1,...,n, und f:ZailAi.
i=1

Umgekehrt sind Linearkombinationen von Indikatorfunktionen beschrankter messba-
rer Mengen immer Elementarfunktionen.

Satz 1.46. Seien B € MY, a € R und seien f,g, fi,..., fn € E(B). Dann gilt:
(a) af, f+g € E(B). Insbesondere ist E(B) ein R-Vektorraum.
(b) min;—y__, fi, max,—1__, fi € E(B).
Beweis. Folgt aus Bemerkung 1.45 und Satz 1.38(a). O

Satz 1.47. Seien B € M" und f: B — R messbar. Dann existiert eine Folge (fi)r C
E(B) von Elementarfunktionen mit

Ifel < |fl  fir alle k und klim fr(x) = f(x)  fir alle z € B.
—00

Ist f nichtnegativ, d.h. f(B) C [0,00], so kann man eine solche Folge finden, welche
zusdtzlich
0< fi(z) <

=

(x) < f(z)  firallex € B, ke N
erfillt.
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Beweis. 1. Spezialfall: f nichtnegativ. Definiere dann f;: B — R fiir £ € N durch

(m—1)27%  falls (m —1)27% < f(z) < m27" fiir ein m € N, m < k2F gilt;
k, falls f(x) > k gilt.

Die so definierte Folge von Stufenfunktionen hat die gewiinschten Eigenschaften.

2. Allg. Fall: Sei f ecine beliebige messbare Funktion B — R. Dann sind auch
ST, f7: B — [0,00] messbar nach Korollar 1.39. Wir wéhlen (f!), bzw. (f7)r zu f+
bzw. f~ wie im Spezialfall und setzen fj, := fi — fZ. Dann gilt limy_,o fi(z) = fT(z) —
[ (x) = f(z) furallex € Bund |fi| < |fH+ /A< fT+f =|f[firallekeN. O

1.5 Integration nichtnegativer messbarer Funktionen

Satz 1.48 (Produktsatz). Seien k,m € N, N =k +m, A € M* und B € M™. Dann
gilt: Ax Be MY und

(1.5) M (A x B) = \*(A) - \™(B).
Nicht fiir die Losung von Blatt 3 verwenden!
Beweis. Siehe [4, Kap. IX.5, Aufg. 1]. O

Definition 1.49. Fiir f: RY — [0, 0o] definieren wir den Subgraphen U(f) := {(z,y) €
RYxR|0<y< f(r)} CRNFL

Satz 1.50. Sei f: RN — [0,00] eine beliebige Abbildunyg.
(a) Ist f messbar, so ist U(f) € MNTL.

(b) Sind fi.: RY — [0,00|, k € N messbare Funktionen mit f, < fri1 fiir alle k und
limy_,oo fr = f punktweise, so gilt

(1.6) NHU(f) = lim XU (fi)-

k—o00
(c) Ist f € ERY), so gilt

AU = Dy AN{f =)

yef(RY)
Beweis. Sei zunichst f € E(RY). Dann ist f(RY) endlich und

uh= | {F=vrx0y).

yEf(RN) e MN
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Nach Hauptsatz 1.26 und Satz 1.48 ist also U(f) € MY+ mit

MWHO) = Y, AU =yh - A0 = Yy AN {f=yh).

yef(RY) yef(RN)

Insbesondere folgt (c).
Seien nun fi, k € N Funktionen wie in (b). Dann ist f messbar nach Korollar 1.43.
Wir zeigen nun

(1.7) Ist U( fx) messbar fur alle k, so auch U(f) und (1.6) gilt.

Es gilt
U(fr) CU(for1) fiiralle kund  U(f) = | JU(f).
k

Mit Korollar 1.28 folgt
ATEHU(S)) = lim AU (f))-

k—o00

Es folgt (1.7). Wir beweisen nun (a): Ist f messbar, so existiert nach Satz 1.47 eine Folge
von Funktionen f;, € E(RY), welche die Voraussetzungen von (b) erfiillt. Gema8 (c) ist
dabei U(f) messbar fiir alle £ und mit (1.7) folgt die Messbarkeit von U(f). Es folgt
somit (a) und (b) folgt dann aus (a) mit (1.7). O

Definition 1.51. Fiir eine messbare Funktion f: RY — [0,00] definieren wir das
(Lebesgue-)Integral durch

/ f = XU(f) € [0, 00,

Bemerkung 1.52. Aus Satz 1.50(c) folgt insbesondere

(1.8) AV (A) = /1A

fiir jede messbare Menge A C RV,

Satz 1.53 (Satz von der aufsteigenden monotonen Konvergenz). Seien fi: RY — [0, ool
k € N, messbare Funktionen, mit f, < fro1 fir alle k und sei f :=limg_ .o fr. Dann gilt

[ f=lmy o [ fi:
Beweis. Dies folgt direkt aus Satz 1.50(b) und Definition 1.51. O
Satz 1.54. Seien f,g: RN — [0, 00] messbar und o > 0. Dann gilt:

(a) Ist f <g fii., soist [ f< [g.

(b) Ist f=g fi., soist [f=[g.

() Jaf=affund [(f+9)=[f+]g
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) Ist [ f=0, soist f=0 f.i.
e) Ist [ f < oo, soist f < oo f.i.

Beweis. (a): Beachte: Ist f < g f.ii., so existiert eine Nullmenge M C RN mit f(z) < g(z)
fir alle + € RY . M. Dann ist M x R eine (N + 1)-dimensionale Nullmenge (siche
Ubungsblatt 3) und es folgt U(f) \ (M x R) C U(g) \ (M x R). Dies liefert

/ f = AVEU(F) = XU\ (M x R))
<N U\ (M X B) = XV (U() = [

(b): Folgt aus (a).
(c): Seien zunichst f,g € E(RN). Mit F := f + ag € E(RY) gilt dann nach Satz 1.50

/ F= Y o ({F=wh= 3 o {(f=h+ 3 A {a-g=2))

weF(RN) yef(RN) z€a-g(RN)
= > W=t X e g=ah = [f4a o
yef(RN) zeg(RN)

Fiir den allgemeinen Fall seien f,g: RY — [0, 0o] messbar. Nach Satz 1.47 existieren
dann fi,gr € ERY) mit 0 < fir < fig1, 0 < gp < geyr fir alle k und limy o0 fx = f
sowie limy_, g = ¢. Es folgt dann

/(f—i—ozg) Satz 153 yir /(fk + agg) = lim /fk + a lim /gk Satz 1.53 /f—i—oz/g.
k—o0 k—o0 k—o0

(d): Sei Ay, := {f > 1} fiir k € N. Dann ist 114, < f und somit nach (a): 1AV (A4) =
[ +14, < [ f =0 fiir alle k. Es folgt, dass {f > 0} = U,y Ax eine Nullmenge ist.

(e): Sei A:={f =o0}. Dannist k-1, < f und somit kA (A4) < [ f nach (a) fiir alle
k € N. Es folgt, da k beliebig gewéhlt ist und [ f < oo gilt, dass A(A) = 0 gilt. ]

Satz 1.55. Seien fy: RN — [0,00], k € N messbar.

(a) Fir f=> 2 fegilt [f=>00[F (Satz von Beppo Levi)
b) Ist [ fi < oo und fyp1 < fi fir alle k, so gilt

/ lim f; = lim / fr (Satz von der absteigenden monotonen Konvergenz)
k—00 k—o00

Beweis. (a): Sei gy, := Zle fj, dann ist 0 < g < gy fiir alle k£ € N. Mit Satz 1.53
folgt
. . Satz 1 54(c
/fz/]}ggogkzklggo/gk = ;}LIEOZ/JCJ Z/fk
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(b): Wegen [ fi < oo und weil f, N\, f gilt, kénnen wir nach Satz 1.54(e) annehmen,
dass fr(x) < oo fiir alle x und k gilt. Dazu setzen wir jeweils fr(z) = 0 fir z in der
Nullmenge {f; = co}. Die Werte der unten betrachteten Integrale verandert dies nicht,
laut Satz 1.54(b). So kénnen wir f := limy_,o fr und g := f1 — fi definieren. Dann
ist wiederum 0 < gx < gguq fir alle & € N und mit Satz 1.53 folgt limk_mofgk =
Jlimg oo g = [(f1 — f). Mit Satz 1.54(c) erhalten wir

/(fl_f)“‘/f:/fl:/gk‘l‘/fklﬁ—%o/(fl_f)‘{'kh_{go/fk-

Dies liefert limy_, [ fr = | f, wie behauptet. O

Definition und Bemerkung 1.56. Sei B € M"Y messbar und f: B — [0, oo] messbar,
und sei f die triviale Fortsetzung von f auf RY wie in Bemerkung 1.34(b). Wir setzen

-1

Satze 1.53 bis 1.55 iibertragen sich dann auf Integrale tiber B. Es gilt insbesondere:

a) [, f=AHU(S)), wobei U(f) = {(z,y) e BxR|0<y < f(x)} gilt.
b) J[pf=0 = f=0¢fi. auf B.

Beachte, dass ebenfalls f = 15f gilt.

Satz 1.57. Seien a,b € R, a < b und sei f: [a,b] — [0,00) Riemann-integrierbar. Dann

ist f messbar und es gilt
b
| i=[ rwa
[a,b] a

Beweis. Fur festes n € N sei Z = {xg,..., 2z} C [a,b] die dquidistante Zerlegung der
Feinheit an ,dh oz, =a+ kB2 o, fir k= 0,..., 2" Seien ferner ¢, ¢, € &([a,b]) definiert
durch

on(t)y= inf f, (t)= sup f furallet € [xp_q,2%) und k=1,...,2"

[Th_1,78] [T—1,2k]

und ¢, (b) = f(b) = 1,,(b). Dann gilt

sowie
a,b a,b
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fir alle n € N. Fur p, := ¢, — ¢n € E([a,0]) gilt 0 < ppi1 < pn. Aus der Be-
schranktheit von f folgt auBerdem [ py < co. Also existiert eine messbare Funktion
p = lim, 00 pn: [a,b] = [0,00) und es gilt

/ p Satz 255(13) lim On (1;0) lim [O(f7 Zn) - U(f7 Zn)] -
[a,b]

n—o0 [a,b] n—00

wobei die letzte Gleichheit aus der Riemann-Integrierbarkeit von f folgt (siehe Mathe
I). Es folgt mit Satz 1.54(d), dass p = 0 f.ii. in [a, b] gilt und zusammen mit (1.9) folgt
lim,, o n, = f .. auf [a, b]. Nach Korollar 1.43 ist somit f messbar und es gilt

fSatz153 m/ thfZ /f 0
m Sy P

Bemerkung 1.58. Ist B € MY und f: B — [0, co] messbar, so sind andere gebriuchli-
che Schreibweisen fiir [ 5 J auch:

/Bf(x)dx, /Bf(x)d(ml,...,x]v), /Bf(x)d)\(x) oder /Bf(x))\(dx

Sind a,b € R, a < b und B = (a,b),[a,b], (a,b],[a,b), so schreiben wir gelegentlich
fB f= f: /-

Bemerkung 1.59. Sei RY = R* x R™ mit k,m» € Nund N = k +m. Fir A C RY und
r € R¥ sei
A, ={yeR"| (z,y) € A} CR™ (z-Schnitt von A)

Man sieht leicht: Ist A offen, so ist A, offen in R™ fiir alle z € R*.

Satz 1.60. Sei A C RY = R* x R™ messbar. Dann gilt das Cavalierische Prinzip (CP):
(i) A, € M™ fiir fast alle z € R*.
(ii) Die Funktion f: RF — [0,00], f(z) := \*(A,) ist messbar.

(iil) Es gilt N(A) = [gu [ = [pr A*(As) d.

Beweis. Siehe z.B. [4, Kap. X.6]. O

Satz 1.61 (Satz von Fubini (1. Version)). Sei N =k +m und f: RY — [0, 00] messbar.
Fiir x € R sei ferner f,: R™ — [0, 00| definiert durch f.(y) = f(z,y). Dann gilt

(a) Fir fast alle x € R¥ ist f, messbar.

(b) Die fast iberall definierte Funktion R* — [0,00], © /= [o fo = [om f(2,y) dy ist
messbar und es gilt

/wa :/Rk (/ fw) do = / [ fy)dyda
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Beweis. (a) Sei (1) C E(RY) eine aufsteigende Folgende nichtnegativer Elementarfunk-
tionen mit f = limg .o @y iiberall auf RY, so wie in Satz 1.47. Nach (CP) ist dann
VE(y) = op(z,y) fiir festes k und x € R* \ M}, mit einer k-dimensionalen Nullmenge M),
eine Elementarfunktion auf R™. Es folgt, dass ¢f fiir x € R* \ (2, M}, und alle k € N
jeweils eine Elementarfunktion und somit f, = limy_,. ¢} fir fast alle z in R* messbar
ist.

u (b): Sei A:=U(f) C RN =R} x R™*!, Fiir x € R* ist dann

Ay ={(y,2) ER" xR (z,y,2) € A} = {(1,2) | 0 < 2 < f(z,y)} = U(fs) C R™.

Fiir fast alle z € R* ist nun nach (a) die Funktion g: R¥ — [0, o0], = Jom fo =
A" (A,) wohldefiniert. Nach (CP) ist g messbar und es gilt fRNf = )\N+1(A) =

ng' D

Bemerkung 1.62. Sei f: RY — [0, oo] messbar. Die N-malige Anwendung von Satz 1.61

liefert
/ / /f:z;l,..., Jdzy ... dxy
]RN

Ist m: {1,...,N} = {1,..., N} eine Permutation, so gilt auch

/RN / /f L1y, dZB7T .. dib‘w(l)

Es kommt also bei nichtnegativen Funktionen nicht auf die Integrationsreihenfolge an.

Beispiel 1.63. Sei B := {(z,y) | 1<y <2, 1<z <y} CR*und f: B — [0,00]
gegeben durch f(z,y) = gyc—z Als abgeschlossene Menge ist B messbar, ferner ist f als
stetige Funktion auf B messbar. Sei nun f: R? — [0, co] die triviale Fortsetzung von f.
Dann gilt:

/f /R2 //f:icydxdy—/ lyi_zdmdy:/IQ_TyQ
:/1( y+y)dy—<yg—y;>1z(§—2>_(%_%):g_g:%
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2 Integrierbare Funktionen

Im Folgenden sei stets B C RY eine messbare Menge.
Definition 2.1.

(a) Eine messbare Funktion f: B — R heifit (Lebesque-)integrierbar (auf B), wenn
[l f] < oo gilt.
Wir setzen L}(B) :={f: B — R | [ integrierbar}.

(b) Fir f € LY(B) sei

/ f= / fr —/ fTeR (Lebesgueintegral von f tiber B).
B B B

Man beachte: Nach Korollar 1.39 sind f* := max{f,0} und f~ := —min{f,0}
messbar und nichtnegativ und besitzen somit ein Integral. Ferner ist f* < |f| und
somit ist [, f* < [5|f] < co. Daher ist [, f € R wohldefiniert.

Bemerkung 2.2. (a) Ist f € £(B) nichtnegativ, so stimmt [, f aus Definition 2.1(b)
mit Definition 1.51 iiberein.

(b) Ist f: B — R derart, dass |[ gl f| < oo gilt, so stimmt f nach Abanderung auf einer
Nullmenge nach Satz 1.54 mit einer Funktion f € £(B) iiberein. Wir werden
dies benétigen, wenn wir punktweise Grenzwerte von Funktionenfolgen in £(B)
betrachten.

(c) feLU(B) & |fl € LY(B)

(d) Ist g € LY(B) und f: B — R messbar mit |f| < g f.i. auf B, so ist auch f € L}(B)
(Majorantenkriterium).

(e) Ist g € £LY(B) und f: B — R messbar mit f = g f.ii. auf B, so ist auch f € L}(B)
und [, f = [z9

(f) Wir schreiben anstelle von [, f auch [, f(z)dz, [ f(x)dA(z), [ f(x) A(dz) baw.
fB f(l') d(l'l, c.. ,CL’N).

Satz 2.3. Seien f,g € L'(B) und sei o € R. Dann gilt:
(a) Ist f < g fii. auf B, soist [, [ < [59.
(b) Ist f =g fi., soist [5f = [z9.
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(¢) frage LYB) und [,(f+ag)= [z f+a[sg.
(d) UBf| < [l f| (Standardabschétzung)
(e) Ist [L|f| =0, soist f =0 fi. auf B.

Beweis. (a): Sei M C B eine Nullmenge mit f < g auf B\ M. Dann ist auch f+ < g*
und f~ > ¢~ auf B\ M, also

Jor= s o= o=

(b): folgt direkt aus (a).
(c): Esist fir F':= f+ ag: |F| < |f|+ |o||g| auf B, also

[1F1< [ 11+ lallol = [ 171+ lal [ jg] <o

Die Linearitat folgt d&hnlich wie in (a).
(@: [ fl = f" = Jof [ < pft+ ot =[5/ fB|f|

(e): Folgt wie im Falle einer messbaren Funktion f: B [ O
Satz 2.4. Sei N =k +m.

(a) Satz von Fubini (2. Version): Sei f € LYRYN). Dann ist fiir fast alle v € R*
die Funktion R™ — R, y — f(x,y) integrierbar. Die f.4i. definierte Funktion
T [om [(x,y) dy ldsst sich dabei zu einer Funktion in L'(RF) fortsetzen, und es

qilt:
/RNf:/Rk Rmf(xay)dydx.

(b) Ist f € LY(B), so gilt auch

(2.1) /RNf:/R.../Rf(x)de...dxl:/R.../Rf(x)dxﬁ(]v)...dxﬂ(l)

fir alle Permutationen w: {1,..., N} — {1,...,N}.

(¢) Satz von Tonelli: Ist f: RN — R messbar und [, ... [o|f(@)| dzzy) ... daeq) < oo
fiir mindestens eine Permutation w: {1,...,N} — {1,..., N}, soist f € L'(RY)
und (2.1) gilt fir jede Permutation.

Beweis. Dies folgt direkt durch Anwendung vom Satz von Fubini (1. Version) auf f*
und f~ bzw. auf |f]. O

Bemerkung 2.5. (a) In Anwendungen ist man haufig vor Allem daran interessiert,
die Integrationsreihenfolge zu dndern, um Rechnungen vereinfachen zu kénnen.
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(b) In Satz 2.12 weiter unten werden wir sehen, dass Satz 1.57 iiber den Zusammen-
hang von lebesgue- und Riemannintegral auf vorzeichenwechselnde Funktionen
ausgedehnt werden kann. Dies verwenden wir in den folgenden Beispielen.

Beispiel 2.6. Sei A C RY eine beschrinkte messbare Menge mit AV (A) > 0. Dann ist
der Schwerpunkt S(A) = (s1,...,sn) € RY von A definiert durch

1
i = T zd ey .
s )\<A)/Aa: (21 TN)

Konkretes Beispiel: Sei A := {z € R? | 27 — 3 < 25 < 1} C R% Wir bemerken, dass
A C(—2,2) x (=3,1) gilt. Dann ist

A(A) Stetor /R N(A,,) day = / “(1 = (22— 3)) day

-2
2 16 32

= 4 —2)de, =16 — — = =,

/( x3) day 3 =3

-2

AuBerdem gilt |x114(z)| < 2-14(x) und |z2la(z)] < 3-14(2), fiir alle z € R% Da 14
integrierbar ist, liefert das Majorantenkriterium, dass die Funktionen x114 und 2514

integrierbar sind. Wir koénnen den Satz von Fubini anwenden:

/xl dx:/ x1la(xy, ) dx Satém/xl/1A(x1,x2)dx2dx1 :/xl)\l(Axl)dml
A R2 R R R

2
= / z1(4—23)dr; =0 (ungerader Integrand)

-2

sowie

/x2 dz =. /x2/1A X1, To) dry dry = / T2/ o + 3 das
A _
2 4 1 2
:2/( )fds:2(552—233) 5
0

4
=-20-4.28= 22°= "7,
o O 5 5
Es folgt fiir den Schwerpunkt:
3 32 3
A —— | = — .
s =3 (0-5) = (0-3)
)

(0,1)x(0,1) C R?und f: B — R definiert durch f(x,y) = CETEL
s=x+vy

I+y o 2
/ S ds
ds = dz Y 53

s=ity 1 y 1 1

Beispiel 2.7. Sei B :=
Dann ist

/f‘”y dx_/;(f;y) =

+ =
y 14y (1+y)? vy (1+y)?
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also

[ [ rewasar=— [

s=1+y
ds = dy

Offenbar ist jedoch f(z,y) = —f(y,z) fur alle (x,y) € B, also folgt

1 1 1 1 1 1
/Of(x,y)dy——/o f(y,w)dy:(Hx)Q, also /O/Of(:v,y)dydm—§

Hier hangt der Wert des iterierten Integrals von der Integrationsreihenfolge ab! Dies ist
kein Widerspruch zu Satz 1.61, denn f # 0. Ferner gilt f ¢ £1(B), denn

r—Y
EIEEYS LY e,y
/ (z,y)€B|z>y} (1} + y)3
Satz 1.61 -y s=x+vy
d dr =
// (v +y)3 ver= ds = dy

//M_Sdsdx—/(‘?“) |

11 1 (11
— 4+ ———|dx= —dz = i —1 = 0.
/0 (a: 4x+2x :v) v 4/0 2 T Atk og(7) >

£

2z

dx

xT

Somit ist dies auch kein Widerspruch zu Satz 2.4, und |’ 5 [ ist nicht definiert.
Satz 2.8 (Satz von der monotonen Konvergenz). Seien fy € LY(B) fir k € N.

(a) Ist foy1 = fi fir alle k und supy, [, fo < 00, so ist f := limy_o fir € L(B) und
es gilt [ [ =limy o0 [ fr-

(b) Ist fry1 < fi fiir alle k und infy, fB fr > —0o0, so ist f:=limy_ o fr € L(B) und
es gilt fo = limp_,00 fB fr.

Beweis. (a): Setze gy := fr — f1 fur k € N. Man beachte, dass hier alle f; Werte in R
annehmen und dass diese Differenz daher wohldefiniert ist. Dann ist 0 < g < ggyq fiir
alle k und fiir g := limy_,, gx = f — f1 gilt nach Satz 1.53

/g— lim Ik 223 im / fk_/ fi < o0.
B k—o0 B k—o00 B B

Also ist g € L'(B). Folglich ist f = g+ fi € LY(B) und [, f = [p9+ [5/1 =

(b): Dies folgt nach (a) durch Anwendung auf — f;, k € N. O
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Satz 2.9 (Lemma von Fatou). Seien fy € L1(B), k € N und g € L'(B).

(a) Ist fr, > g fir alle k und supyey [ fr < 00, so ist auch f :=liminf,_, fi € L'(B)
und

f < hmmf/ fx-

(b) Ist fi < g fir alle k und infyey [5 fx > —00, so ist auch f := limsup,_, fx €

LY(B) und
/f>llirisogp/fk

Beweis. (a): Setze hy := inf;>y f;. Dann ist hy messbar und g < hy, < fj, also
\h| < |g| + | fe| € £Y(B) und somit hy € £(B) fiir alle k € N.

Weiterhin ist Ay, < Ry fiir alle & und supy, [ by < supy, [ fe < co. Mit Satz 2.8(a) folgt
[ =limg_,o0 hp € L1(B) und

/f = lim hk :liminf/ hy, < hmmf/ fr.
k—o0 k—o0
(b): folgt analog. O

Satz 2.10 (Satz von der dominierten Konvergenz (Satz von Lebesgue)). Seien die
Funktionen fy fiir k € N messbar auf B, und g € LY(B) erfille | fx| < g auf B fir alle
k € N. Ferner moge der punktweise Grenzwert [ := limy_,o fr f-1. auf B existieren.

Dann gilt fi, f € LY(B) firk € N und [, f = limy_ o0 [ fr-

Beweis. Fir alle k ist fp € £'(B) nach dem Majorantenkriterium. Ferner gilt

< [1al< [ 1ol <.

Weiterhin ist f = liminfy_,o frx = limsup,_, . fx f.0. auf B. Satz 2.9 liefert also

liminf/ fr > fZlimsup/ I, also /f: lim / [ O]
k—oco Jp B k—00 B B k—oo Jp

Satz 2.11. Sei f € £L'(B). Dann gilt:

Jr
B

(a) Es eistiert eine Folge von Elementarfunktionen fi € E(B) mit limy_o0 [5|f— fi| =
0.

(b) Es existiert eine Folge (fi)r € C(B) N LY(B) mit limy_o0 [5|f — ful = 0.

(c) Es existiert eine Folge (f)x € C(B) N LY(B), so dass die Mengen {x € RY |
fu(x) # 0} fiir jedes k € N beschrinkt sind und limy_o [|f — fu| = 0 gilt.
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Beweis. (a): Offenbar ist £(B) C £'(B) und nach Satz 1.47 existieren f; € £(B), k € N
mit | fx| < |f| fur alle k£ und fr — f punktweise. Setze gy := |fr — f|. Dann konvergiert
die Folge (gx)r punktweise gegen 0 und es gilt

lakl < |ful + |f] < 2|f] auf B fur alle k € N,

Mit dem Satz von Lebesgue folgt limy_, f 5 9x = 0 wie behauptet.

(b): Ohne Einschrinkungen sei B = R"; den Fall fiir allgemeine Mengen B kann man
durch den Ubergang von f zur trivialen Fortsetzung f und durch Einschrinkung der
erhaltenen Folgen (f;), auf B erledigen.

Fall 1: f = 1, fiir eine offene Teilmenge 2 C RY. Dann definieren wir stetige Funktionen

{min{l, kdist(z,00Q)}, x €

fi: RY 5 R, fi(z) = 0, el Q

Es gilt 0 < fi < fra1 < f fir alle £ und limg_, ., fr = f punktweise auf 2. Es folgt

Satz 2.10

/|f—fk|d1::/ fdx — fedx 7= /fd$— fdx=0.
RNT RN ]RN ]RN RN

Fall 2: f = 1 fiir eine beschrinkte messbare Teilmenge Q2 C RM. Sei ¢ > 0. Mit
der Definition des dufleren Lebesguemafles finden wir Q) € Q, so dass Q C Uy, Q
und > 07 |Qk] < A(2) 4 /2 gelten. Dann tiberdecken wir diese halboffenen Quader mit
groBeren offenen Quadern Q) so, dass > oo, AM(Qr) < A(Q) + ¢ gilt. Dies liefert die offene
Teilmenge Q' == | J;2, Q) mit Q C Q' und

/ oy — Lo dz = M@\ Q) < <.
]RN

Also folgt die Behauptung aus Fall 1.

Fall 3: f € £(RY). Dann lésst sich f als endliche Linearkombination von Funktion wie
im Fall 2 schreiben und die Behauptung folgt.

Fall 4: f € £'(RY) beliebig. Dann existiert nach (a) zu jedem & > 0 ein f € E(RV)
mit [on|f — f|dz < e. Also folgt die Behauptung aus Fall 3.

(c): Dies folgt nun aus einer Kombination von (a) und (b). O

Satz 2.12. Seien a,b € R, a < b.
(a) Sind a,b € R und ist f: [a,b] — R Riemann-integrierbar, so ist f € L'([a,b]) mit

/[a’b]fzfabﬂt)dt-

(b) Ist f: (a,b) — R stetig und ezistiert das uneigentliche Riemann-Integral fj|f(t)| dt,
so ist f € L*((a,b)) und

b
/ f :/ f(t)dt (uneigentliches Riemann-Integral).
(a,b) a
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Beweis. (a): Ist f Riemann-integrierbar, so sind f* Riemann-integrierbar und somit
gilt die Behauptung fiir f* nach Satz 1.57 und die Behauptung folgt somit auch fiir
f=r=r.

(b): Als stetige Funktion ist f messbar. Die Existenz von f5| f(t)| dt impliziert die

Existenz von f; f(t)dt. Seien nun r,, s, € (a,b), n € N mit r, < s, und lim, . r, = a,
lim,, oo Sy, = b. Sei ferner

f@t), t€lrn, snl,

fn: (a,b) = R definiert durch  f,(t) := {
0, sonst.

Dann gilt lim,, ., f, = f punktweise auf (a,b). Wir unterscheiden nun zwei Félle:
Fall 1: f > 0 auf (a,b). Dann ist f,, < f,41 fiir alle n € N, also

f Satz 1.53 lim fn = lim f = hm f dt / f dt < 0.

(a’b) oo (avb) oo (Tnysn) oo Tn

Es folgt f € £((a,b)) und damit die Behauptung.
Fall 2: f beliebig. Der erste Fall (angewendet auf |f|) liefert dann |f| € £'((a,b)). Da
ferner |f,| < |f| auf (a,b) fur alle n € N gilt, folgt mit Satz 2.10:

feL£Y(a,b) und f=lim » fn W‘”be“/f O

(a,b) n—o0

Bemerkung 2.13. Satz 2.12(b) ist ohne die Bedingung der Riemann-Integrierbarkeit von
|| im Allgemeinen falsch. Konkretes Beispiel: Die Funktion f: (0,00) — R, f (z) = sin(x)

T

ist messbar und der Betrag des Riemann-Integral ist endlich, d.h. ’ fo dx‘ < 0.
Aber f ist nicht Lebesgueintegrierbar, da fo fH(z)de = fo x)dxr = oo gilt.

Bemerkung 2.14.

(a) Fir f € L}(B) lisst sich eine sogenannte Halbnorm durch

1 fllzrs) == /B|f|dx

definieren. Fiir f, g € £L}(B) und « € R lésst sich leicht iiberpriifen:

() lleafllers = lalllfllzs
(ii) [|fllz1y = 0. Ferner gilt || f{|z1(p) = 0 genau dann, wenn f = 0 f.i. in B
(wegen der f.ii.-Eigenschaft handelt es sich hier nicht um eine Norm).

(i) If +9gllcvmy < 1fllerm) + gl s

Wir definieren nun auf £!(B) eine Aquivalenzrelation durch

f~g = f=g¢g fast iiberall auf B.
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Wir setzen
fl={9eLY(B)| f~g}

als die zugehorige Aquivalenzklasse zu f und definieren:

LNB) = {[f]| f € LY(B)}.

Es gilt dann

alff=lafl, und [f+g]l=[fl+]g] firfgeL(B), aeR.

Damit ist L'(B) ein R-Vektorraum und durch ||[f]||11(5) := ||f]lz1(5) wird eine
Norm auf L'(B) erklirt. Aus Bequemlichkeitsgriinden schreibt man tiblicherweise
f € LY(B), d.h. man lisst die eckigen Klammern weg. Somit steht f also sowohl
fiir eine bestimmte Funktion als auch fiir alle anderen Funktionen, die fast tiberall
mit dieser Funktion iibereinstimmen. Schlampig (aber eingdngig) formuliert steht
f also fiir eine nur bis auf Nullmengen eindeutig definierte Funktion. Wir schlieflen
uns im Folgenden dieser Bezeichnungsweise an.

(b) Man kann zeigen:

1. Ist fy € £Y(B) fir k € Nund ist f € £'(B) mit ||f — fil|p1p) — 0 fiir k — o0
(man sagt (fx)r konvergiert gegen f in L'(B)), so existiert elne Teilfolge (fx,);
welche punktweise fast iiberall auf B gegen f konvergiert.

2. Ist (fiu)r C LY(B) eine Cauchyfolge bzgl. ||-||11(p), so konvergiert (fy)x, d.h.
es gibt ein f € LY(B) derart, dass f gegen f in L'(B) konvergiert. Es folgt,
dass L'(B) ein Banachraum mit Norm ||-||;1(p) ist.

Wichtig ist hierbei: Eine L'(B)-Konvergenz liefert im Allgemeinen nicht die
punktweise Konvergenz der Gesamtfolge (auch nicht fast iiberall).

(¢) Analog definiert man fiir p > 1:

@) = {N11Pec®) e = ([ |f|”)

LP(B) ist dann fur alle p > 1 ein Banachraum. Wie zuvor lasst man die eckigen
Klammern tblicherweise weg und schreibt einfach f € LP(B).

Speziell: Fiir p = 2 ist L*(B) ein Hilbertraum mit dem Skalarprodukt (f, g)r2(p) =
J5 [ g fir f,g € L*(B) (L*(RY) wird auch als der Raum der quadratintegrablen
Funktionen bezeichnet).

2.1 Parameterabhangige Integrale und
Transformationsformeln

Satz 2.15 (Satz iiber die stetige Parameterabhéngigkeit von Integralen). Sei X ein
metrischer Raum, f: X x B — R eine Funktion mit folgenden Eigenschaften:
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(i) f(z,-): B — R ist messbar fir alle x € X
(ii) f(-,y): X — R ist stetig fir fast alle y € B
(iii) Es existiert g € LY(B) derart, dass fir alle v € X gilt: | f(z,-)| < g auf B.
Dann ist die Funktion h: X — R, h(z fB z,y)dy stetig.

Beweis. Seien a € X und (xy)r C X eine Folge mit limg_,o, 2 = a. Definiere fy: B — R
durch fi(y) = f(x,y). Fir alle k € N ist dann f, messbar nach (i) und |f;| < g auf B
nach (iii). Weiterhin gilt

fi = fla,): B—>R punktweise f.i. auf B nach (ii).

Mit dem Satz tiber die dominierte Konvergenz, Satz 2.10, folgt

= [ ey = [ f)dy = Jin [ feno)dy = Jim b

also ist h stetig in a. O]

Satz 2.16 (Satz zur Vertauschung partieller Ableitung und des Integrals). Seien X C RY
offen und f: X x B — R eine Funktion mit

(i) f(z,-) € LYB) fir alle x € X.
(ii) f(-,y): X — R ist stetig differenzierbar fir fast alle y € B.

(iii) Es existiert g € LY(B) derart, dass fir alle j € {1,2,...,N} und z € X gilt:
5-(@, ) < g L. auf B.

Dann ist die Funktion h: X — R, h(z fB x,y) dy stetig differenzierbar mit

of

(2.2) oh@) = | 5

= (z,y)dy firallexe X, 5=1,...,N.

Beweis. Es ist nur (2.2) zu zeigen, denn dann folgt die Stetigkeit von d;h: X — R aus
Satz 2.15. Sei dazu z € X, j € {1,...,N} und (g,,)m € R\ {0} eine Nullfolge. Fiir

m € N definiere
1
bt B= R, kn(y) = —(f(z +emej y) — f(z,9)).

Em

Dann ist k,, messbar fiir jedes m € N und

of

(2.3) kp — 8_( -} fir m — oo punktweise f.ii. nach Voraussetzung (ii).
Lj

Nach Korollar 1.43 ist %(l‘, -) dann messbar. Weiterhin ist nach den Voraussetzungen
J

|km(y)| = ‘%(m’,y)' <lg(y)| fir alle y € B und m € N.
J
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Hier ist 2’ = 2/(y, m) nach dem Mittelwertsatz (siehe Mathe II) als Zwischenstelle in
{x +te; | [t] < |em|} gewdhlt. Mit Satz 2.10 und (2.3) folgt

h(z + ene;) — h(x)

:/km(y)dy%/a—f(x,y)dy fir m — oo.
B Ba.fl:]

Dies liefert (2.2). O

Beispiel 2.17. Die Gammafunktion I': (0,00) — (0,00) ist definiert durch I'(z) :=
Jo et dt.

(a) Wir zeigen zuerst: I' € C*°((0,00)). Um dies einzusehen, sei k € Ny. Wir wahlen
zunéchst feste 0 < a < b und definieren die stetige Funktion f(z,t) := t*"'e™". Sei
ferner

logt[Ft*~te™, t <1
gr: (0,00) = R,  definiert durch g (¢) := {| o8 ¢ ’

logt|Ftb=te™t, t>1.

Dann ist g, stiickweise stetig und somit auf jedem kompakten Teilintervall von
(0, 00) Riemann-integrierbar. Wir erhalten

0o 1 o)
/ gk(t)dtg/ |10gt|kt“_1dt+/ llog t|* "~ te™" dt < oo.
0 0

1

Wegen g;, > 0 und nach Satz 2.12 ist gx € £1((0,00)). Weiterhin ist

(2 s

fur alle t € (0,00) und z € (a, b). Mit Satz 2.16 folgt daher induktiv I' € C*°((a, b)).
Da a und b beliebig gewahlt waren, folgt I' € C*°(R).

< gx(t)

(b) Fur alle z > 0 ist 2I'(z) = I'(z + 1). Insbesondere gilt fir n € N: I'(n) = (n — 1)L.
(leichte Ubung!)

Satz 2.18 (Transformationssatz). Seien U,V C RY offen und ¢ € Diff(U, V) (C'-
Diffeomorphismen zwischen U und V). Set ferner f: V — R gegeben. Dann gilt: Genau
dann ist f € LYV), wenn (f o p)|det J,| € LY(U) ist, und in diesem Fall gilt die
Integraltransformationsformel:

(2.4) [ rwan= | LSy | reteplaet 1) e

Beweis. Umfangreich, siehe z.B. [10], Kapitel IV.2. O

Bemerkung und Beispiel 2.19. Seien U, V, ¢ und f wie in Satz 2.18.
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(a) (2.4) gilt auch, falls f nichtnegativ und lediglich messbar ist — Integrierbarkeit ist
in diesem Fall nicht notwendig.

(b) Ist ¢ affin linear, d.h. ¢(z) = Tz + ¢ fiir x € U mit T € GL(N) und ¢ € RY so ist
det J,(x) = det T fiir alle z € U und somit gilt

(2.5) / fly)dy = ]det(T)]/ f(Tz + c¢)dz.
v U
(c) Ist K C U messbar, so auch p(K) C V und es gilt

W(e() = [ [det (o) e

Dies folgt aus (a) angewendet auf f: RY — R, f(z) = 1, (z). Mit ¢ wie in
(b) erhilt man speziell AN (T(K) + ¢) = |det(T)|]\V(K) fir T € GL(N) und
T(K)4+c:={Tzx+c|z e K}.

Spezielles Beispiel: Seien a, b, ¢ > 0, und sei A = {(x, Y, 2) z—; + Z—j + 'Z—z < 1} CR?
ein Ellipsoid. Um A3(A) zu berechnen, betrachten wir '€ GL(N) definiert durch
T(z,y,z) = (ax,by, cz). Dann ist det(T") = abc > 0 und A = T'(B4(0)), also folgt
g ung: 4

U be—r.

N(A) = |det(T) N (B,(0) :

(d) Ist W = [0,1]Y C RY der Einheitswiirfel und T € GL(N), so ist T(W) das
von den Vektoren Te;, i = 1,..., N aufgespannte Parallelotop. Nach (c) gilt
M(T(W)) = |det(T)]. Man bezeichnet daher det(T) auch als das orientierte
Volumen von T'(W') (vgl. Mathe II).

(e) Der Beweis von Satz 2.18 besteht im Wesentlichen aus drei groflen Schritten.
Im ersten Schritt beweist man die Formel (2.5) aus (b) fiir stetige Funktionen
f: RY — R, die auBerhalb einer gewissen beschrinkten Menge nur den Wert
0 annehmen. Dabei schreibt man die lineare Transformationsabbildung 7' als
Komposition von Elementarmatrizen (siche Mathe II) und wendet den Satz von
Fubini an.

Im zweiten Schritt betrachtet man allgemein Transformationsabbildungen ¢: U —
V und integrierbare stetige Funktionen f: V' — R. Hier schreibt man f als eine lokal
endliche Summe von Funktionen, die nur auf einer kleinen Menge nicht verschwinden.
Auf diesen Mengen ist jeweils die Abweichung zwischen der Abbildung ¢ und ihrer
Linearisierung aber ebenfalls klein, so dass man durch einen Approximationsprozess
zum Ziel gelangt.

Im dritten Schritt verwendet man Satz 2.11(b), um von stetigen Funktionen zu
integrierbaren Funktionen iibergehen zu konnen.

Satz 2.20.
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(a) (ebene Polarkoordinaten) Fiir f € £'(R?) gilt
f(x)dx :/ r f(rcos(p), rsin(p)) dedr.
R2 0 -7
(b) (Zylinderkoordinaten) Fiir f € LY(R3) gilt
f(z) da::/ / 7“/ f(rcos(p), rsin(p), z) dpdrdz.
R3 —o00 J0 -7

Beweis. (a): Sei U := (0,00) x (—m,7) C R? und P»: U — R? definiert durch Py(r, ) =
(rcos(p), rsin(p)). Aus Mathe II folgt
o V:=PR(U)=R?\ {(x,0) | z < 0}; insbesondere ist R? \ V eine Nullmenge im R.
e P, € Diff(U, V) und det(Jp,(r,¢)) = r fir alle (r,¢) € U.

Mit Satz 2.18 und dem Satz von Fubini folgt die Behauptung.
(b): folgt nun aus (a) und dem Satz von Fubini. O

Beispiel 2.21. Sei f: R — R definiert durch f(z) = e™**. Wegen

1, lz| <1,
el |z| > 1,

Oéf(x)ﬁ{

und mit Satz 2.12(b) folgt, dass f integrierbar ist. Zur Berechnung von [ f betrachten
wir g: R? — R, definiert durch g(x,y) = f(x)f(y). Dann ist g > 0 und

20 [ o= [ 1) [ swave= [ swa [ swa= ([ rwar) <o

Also ist g € £'(R?) und somit nach Satz 2.20(a):

/ g= /OO r /7T o7 (cos?(¢)+sin?(¢)) dodr = /OO r /7T e dpdr
R2 0 —7 0 -7

2 00
—p2 — _t|0o0
:7T/ 2re”" dr = :7r/ e tdt = —me | =
0 0

0
Aus (2.6) folgt also [, f = /7.
Satz 2.22 (Allgemeine Polarkoordinaten). Sei N > 2 und f € L*(RY). Dann gilt

/RNf_/OOOTNl/_: Oﬂ'"/Oﬂf(PN(T,go,Hl,...,QN2))><

—_———
(N — 2)-mal

t=r

dt = 2rdr

X sin 6y sin? Oy .. .sin™ 20y _odf; ... dOn_» dpdr,
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wobei Py induktiv definiert ist durch Pa(r,¢) = (1 cos(p),rsin(¢)) und
Pn(ryp,01,...,0n—2) = (Pn_1(r,¢,01,...,0n_3)sin(0n_2),rcos(Oy_2))  fir N > 2.

Insbesondere gilt fir f € L'(R?):
/R = /O e /_ : /0 " £ cos() sin(9), r sin(i9) sin(0), r cos(9)) sin(6) 6 des dr.

Korollar 2.23. Sei f € L'(RY) eine radialsymmetrische Funktion, d.h. es gibt f:R—=R
mit f(x) = f(|z|s) fiir alle z € RY. Dann gilt

/ f(z)dr = wy_q /00 TN_lf(r) dr,
RN 0

mit
T T 27TN/2
WN—-1 : = 27T/ .. / sin 01 sin2 92 N sinN_2 QN_Q d01 ce dHN_Q = N
0o Jo L)
—_———
(N —2)-mal

Bemerkung: Mit den Begriffsbildungen im folgenden Kapitel werden wir wy_ als die
Oberfliche der Einheitssphire SV~! := {& € RY | |z| = 1} C R" interpretieren konnen.

Beweis. Die Integralformel folgt direkt aus Satz 2.22 und der Identitéat
’PN(T7@7617"'79N72)’:70- []
Bemerkung und Beispiel 2.24.

(a) Ist f eine nichtnegative messbare Abbildung, so gelten die Formeln aus Satz 2.20,
Satz 2.22 und Korollar 2.23 ohne weitere Voraussetzung.

(b) Sei B := B;(0) C RY die Einheitskugel und a > —N. Dann ist die Funktion
x — |2|51p\ 0y (¢) radialsymmetrisch. Somit gilt gemafl Korollar 2.23:

1
— WN-1

/\x!adxszl/ rot V=l dp = :
B 0 N + «

Insbesondere gilt also mit o = 0:

_ o V/2 aN/2
AY(B1(0)) :/ 1, 0)(7) dor = 221 = _ '
RN N NI (§) r(E+1)

Mit der Bemerkung aus Korollar 2.23 liefert dies einen direkten Zusammenhang
zwischen dem Kugelvolumen und ihrer Oberflache.
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3

Integration auf
Untermannigfaltigkeiten und der
GaulBsche Integralsatz

Im Folgenden sei stets M C RY eine k-dimensionale Untermannigfaltigkeit.

Definition und Bemerkung 3.1.

(a)

Sei k < N und A € RV** eine Matrix mit maximalem Rang. Dann ist A'A € RF**
positiv definit, die Abbildung x + Az ist injektiv und es gilt det(A*A) > 0 (siehe
Mathe II). Dabei gilt die Formel

.....

d.h. die Matrix A*A hiangt nur von der Lange der Vektoren Aey, ..., Ae, und den
Winkeln zwischen diesen Vektoren ab. Die positive Zahl y/det(A*A) gibt dabei das
k-dimensionale Volumen des von Aey, ..., Ae; in RV aufgespannten Parallelotops
an. Um dies zu sehen gentigt der Fall N = k; dann gilt \/det(A*A) = |det A| und
dies haben wir bereits in Bemerkung und Beispiel 2.19(d) gesehen.

Sei ¢: U — M NV eine lokale Parametrisierung der k-dimensionalen Unterman-
nigfaltigkeit M. Wir setzen

g”:(@w,@]@@U—HR fU.I'Z,j:L,k’
und
Gy = det ((gij)lgi,jgk) = det (J:;JQZ}) U — (O, OO)
Die Abbildung g, heit Gramsche Determinante der Parametrisierung . Im

Spezialfall k = 2, N = 3 gilt: gy = |19 x Da10|3, wobei a x b das Vektorprodukt
zweier Vektoren a,b € R3 beschreibt (Ubung).

Beispiel 3.2. Sei M := S¥"1 C RV V = RV \ {ex}, ¥: RNt - M NV die ste-
reographische Projektion, gegeben durch ¢(x) = ﬁ(\z%p—l)' Nach Ubungsblatt 2
2

folgt

4
(J¢($))tjw($) = QEN—l fur z € RN_I.

(1+ |z[3)

Es folgt also fiir die Gramsche Determinante von :

(z) = 1 o fiir v € RN !
Wm0+ 2By '
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Satz 3.3. Seien (Uy, Vi, @) und (Us, Vo, 1) zwei lokale Parametrisierungen von M mit
W =MnViNVy#@. Sei ferner f: M NVi NV, = R gegeben. Dann gilt: (f o ¢)\/3,
ist genau dann integrierbar, wenn (f o ),/gy integrierbar ist. In diesem Fall gilt

(3.1) [ eeve=[ (feuve
(W) Y= (W)
Beweis. Sei m := N — k. Nach Mathe 2 (dedeéh) ist die Parameterwechselabbildung

p=v o T (W) = ~H(W)

ein C''-Diffeomorphismus. Wir untersuchen das Transformationverhalten der Gramschen
Determinanten unter dem Parameterwechsel. Wegen ¢ = v o p ist J, = (Jy, o p)J,, also

gp = det(JLJ,) = det (T (Jy 0 p)! (S © p) )
= (det J,)* det((Jy 0 p)'(Jy 0 p)) = (det J,)?gy o p.

Dies liefert zusammen mit dem Transformationssatz (Satz 2.18): (f o 1),/gy st genau
dann integrierbar, wenn

(f ot 0 p)yGr o pldet Jy| = (f 010 p)y/(det J,)2(gs 0 p) = (f 0 ) /Ty
integrierbar ist. Ist dies der Fall, so folgt weiter (3.1) aus dem Transformationssatz. [

Wegen Satz 3.3 ergibt die folgende Definition Sinn:

Definition 3.4. Sei (U,V,1)) eine lokale Parametrisierung von M. Wir nennen eine
Funktion f: MNV — R elementar integrierbar iber M NV, wenn die Funktion (fov),/gy
iiber U integrierbar ist. In diesem Fall definieren wir das Integral von f tiber M NV durch

/vafda:/U(fowm-

Beispiel 3.5. Sei wiederum M := S? C R® und S_ := 5% \ {e3}. Dann ist 1 elementar
integrierbar tiber S_. Um dies zu sehen, betrachten wir die stereographische Projektion
¥: R? - M NV wie in Beispiel 3.2 mit V := R?\ {e3}. Nach Beispiel 3.2 gilt

gul) = (ﬁ)

also mit Satz 1.61 (Fubini fir nichtnegative Funktionen) und Korollar 2.23

4 &0 4
ldo= [ ————dz =2 e
/ 7 / (1t 22" “/o BRI

s=1+72
ds = 2rdr

*1
:47r/ —ds =47 < 0.
1

s2
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Das néachste Ziel ist, die lokale Definition eines Integrals iiber M aus Definition 3.4 zu
globalisieren, d.h. auf die ganze Untermannigfaltigkeit M auszudehnen. Dazu werden wir
die lokalen Definitionen mit Hilfe einer Zerlegung der Eins ,zusammenkleben®.

Definition 3.6. Seien U C R offen und k£ € Ny U {oo}.

(a) Fiir f: U — R™ bezeichnen wir die Menge supp(f) :={x € U | f(z) #0} NU als
Triger von f.

(b) Wir bezeichnen mit C*(U, R™) den Vektorraum der Abbildungen f € C*(U,R™),
deren Triger kompakt ist. Diese Abbildungen betrachten wir stets als durch 0 auf
RY fortgesetzt. Im Fall m = 1 schreiben wir C¥(U) anstelle von C*(U,R). Der
Raum C2°(U) wird auch als Raum der Testfunktionen auf U bezeichnet.

Proposition 3.7 (Zerlegung (Partition) der Eins). Sei V = {V; | i € N} eine Familie
offener Teilmengen von RN und sei V = Uien Vi- Dann existieren Funktionen n; €
C>(V), j €N, mit

(i

(ii Z] =1 aufV,

) ni(x) €10,1] fir allex € V und j € N,
)
)
)

(ili) fir jedes j € N existiert i € N mit supp(n;) C V;,

(iv) jedes x € V besitzt eine offene Umgebung U in V', so dass U Nsupp(n;) # & nur
fir endlich viele 7 € N gilt.

Die Familie {n; | j € N} nennt man eine der Familie V untergeordnete glatte Zerlegung
der Eins. Die im Beweis konstruierte Zerlegung hat kompakte Trager, d.h. in (iii) gilt
zusdtzlich n; € CX(V;).

Bemerkung 3.8. Anders als tiblich betrachten wir hier aus technischen Griinden glatte
Zerlegungen der Eins, ohne immer kompakte Trager zu fordern.

Beweis von Proposition 3.7. Setze

(3.2) o) = {GXP () 2l <1,

07 ’x|2 Z ]-7
und definiere fiir ¢ > 0 die Funktion p.(z) = p(x/e). Dann ist p. € C=(R"Y) (Ubung!),

supp(pa) = EE(O) und p. > 0 in BE(O)'
Fir k € N definieren wir die Mengen

1
Ay, —{$€V‘dIStZL‘RN\V) T |:1:|2§k:}.

Dann gilt Ay C Agyq fir £ € N, Ay, ist kompakt und V' = (J;~; Ax. Man nennt { Ay }ren

auch eine Ausschéopfung von V- mit kompakten Mengen.
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Zu jedem x € V existieren i € N und ¢, € (0,1) mit B, (r) C V;. Sei X; C V eine
endliche Teilmenge, so dass

A ¢ | B..(2)

reX
gilt. Induktiv finden wir fiir £ > 2 eine endliche Menge X, C V mit

Ak AN A’Zlk—l g U BEI(ZL')

e Xy,

Dies ist moglich, weil Ay ~ Aj_; kompakt ist. Fiir X = U, Xk gilt dann

V=|JB.,()

zeX

Es ist leicht einzusehen, dass die Familie {EEI (x) ‘ reX } eine lokal endliche Uber-
deckung von V ist, d.h., dass zu jedem y € V eine offene Umgebung U C V von y
existiert, so dass U N B, (x) # @ nur fiir endlich viele z € X gilt.

Wir schreiben X = (7;)jeny und €; = &,;, und definieren fiir j € N die gesuchten
Funktionen durch

e\ L — X5

Ogj( ) , x€eV,

ni(x) = { Dojo1 Pey (T — ) O
0, reRNY V.

Definition und Satz 3.9. Seien (U;, V;, ¢;) lokale Parametrisierungen von M, so dass
V = {V; | i € N} eine offene Uberdeckung von M darstellt. Sei ferner {n; | j € N}
eine der Familie V untergeordnete glatte Zerlegung der Eins und sei x: N — N so, dass
suppn; C Vi fir alle j € N gilt. Wir nennen eine Funktion f: M — R integrierbar
tiber M, wenn f iiber alle V; jeweils elementar integrierbar ist und wenn gilt:

(3.3) ZJ | fln; do < .
j=1 Y MV
Ist dies der Fall, dann ist das Integral von f diber M,
(3.4) / fdo = Z/ fn;do,
M j=1 MﬂVn(j)
wohldefiniert, d.h., unabhéangig von V und der gewahlten Zerlegung der Eins.

Beweis. Sei f iiber alle V; jeweils elementar integrierbar. Dann ist (f o 4;),/gy, fiir jedes
i € N messbar und daher fn; und |f|n;, fiir j € N, jeweils iiber V,,(;) elementar integrier-
bar. Die Integrale in (3.3) und auf der rechten Seite von (3.4) sind also wohldefiniert.
Jetzt nehmen wir zusatzlich (3.3) an. Wegen (3.3) und wegen der Standardabschatzung
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(Satz 2.3(d)) ist die Reihe in (3.4) absolut konvergent und somit der Ausdruck auf der
rechten Seite wohldefiniert.

Um die Definitionen zu rechtfertigen, fehlt nur noch, fir die Integrierbarkeit von f
tiber M und den Ausdruck auf der rechten Seite von (3.4) die Unabhéngigkeit von V und
der Zerlegung der Eins zu zeigen.

Sei zunédchst {7y; | j € N} eine weitere V untergeordnete Zerlegung der Eins und
A: N — N gegeben mit supp(v;) C V() fiir alle j € N. Fiir 5,k € N folgt supp(n;7%) C
Vi) N Vg und daher

(35 3 / Fln; do

MﬂVN(ﬂ
> > Satz 1.55(a) >
= Z/ > I fInpde = Z/ |fInjne do
j=1 M0V jk=1Y MOV

Jj=1

() k=1

Satz 3.3 Satz 1.55(a) - -
SN  Umnde ™ E ST [ S do
MﬁVA(m k=1 Mﬂv}\(’“) 1

k=1 i=
o
=3[ ide
k=1 MOVaq)

Somit hiangt der Begriff der Integrierbarkeit von f tiber M nicht von der gewéhlten
Zerlegung der Eins ab.
Fir j € N konvergiert > 7, fn;v, punktweise gegen fn;. Aulerdem gilt

>
k=1

eine in M N V() elementar integrierbare Funktion. Der Satz von der dominierten Kon-
vergenz (Satz 2.10) liefert also

fnjdo = / fnjydo = / [ do.

< I Flnjve = | flmss
k=1

QVN(]-) k=1 MﬂV,{(]-)

Analog gilt auch
S [ pwnde

MQV)\(k)

/ S do =
MﬂV)\(k)

Also kann man das Argument in (3.5) auf f statt |f| anwenden und erhélt, dass die
rechte Seite von (3.4) nicht von der gewéhlten Zerlegung der Eins abhéngt.

Sei nun W = {W, | ¢ € N} eine weitere offene Uberdeckung von M aus lokalen
Parametrisierungen, und sei {~; | k¥ € N} eine W untergeordnete glatte Zerlegung der
Eins. Wir setzen V' = | J,o Vi und W = oy Wi. Indem wir alle V; jeweils durch V; N W
und alle W, jeweils durch W,NV ersetzen, konnen wir V' = W annehmen. Dazu schranken
wir auch die Abbildungen der Zerlegungen der Eins jeweils auf V' ein und erhalten wieder

J=1
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glatte Zerlegungen der Eins, welche auf M unverdndert sind. Die Ausdriicke in (3.3) und
(3.4) &ndern sich also nicht durch dieses Vorgehen. Dann ist auch V U W eine offene
Uberdeckung von M mit lokalen Parametrisierungen, und sowohl {n; | j € N} als auch
{7 | k € N} sind YV UW untergeordnete Zerlegungen der Eins. Aus dem oben gezeigten
folgt die Unabhéngigkeit von diesen Zerlegungen und somit die Unabhéangigkeit von der
offenen Uberdeckung durch lokale Parametrisierungen. O]

Bemerkung 3.10. Wenn M durch (U, V) global parametrisiert ist, dann kénnen wir
die triviale Zerlegung der Eins, {1y}, in (3.4) verwenden. Das Integral von f tiber M ist
dann einfach das zur Parametrisierung gehorende elementare Integral.

Satz 3.11. Seien f,h: M — R integrierbar iber M und sei o € R. Dann sind auch
f+ h und af integrierbar iber M, und es gilt

(a) [, (f+h)do=[,, fdo+ [, hdo.

(b) [y afdo=af, fdo
Beweis. Dies folgt sofort aus (3.4). O
Satz 3.12. Sei M kompakt und f: M — R stetig. Dann ist f integrierbar tiber M.

Beweis. Zu jedem Punkt p € M existiert eine Einbettungskarte (V, 1) fiir M bei p. Sei

r > 0 klein genug, so dass B,(p) C V gilt. Dann ist 7(B,(p)) eine kompakte Teilmenge
von 7(V) und somit ist J,-1 auf 7(B,(p)) beschrinkt. Mit U = 7(M N B,(p)) und
v: U — M N B.(p), v =171y, ist (U, B.(p),®) eine lokale Parametrisierung von M
in p und sowohl U als auch g, sind beschrénkt. Diese Auswahl kénnen wir an jedem
Punkt p von M treffen und folglich die kompakte Menge M mit endlich vielen lokalen
Parametrisierungen (U;, V;, 1), i = 1,2,...,n, iiberdecken, so dass jeweils U; und gy,
beschrénkt sind.

Da f stetig auf M ist, ist f beschrankt. Zusammen mit der Stetigkeit von f und der
Beschrénktheit von U; und gy, erhalten wir, dass f iiber jede Menge M NV, elementar
integrierbar ist. Sei {n; | j € N} eine der Familie {V; | i = 1,2,...,n} untergeordnete
glatte Zerlegung der Eins mit supp(n;) C Vi fir alle j. Es folgt mit dem Satz von
Beppo Levi:

;/me flndo =" > |fIn; do

@ i=1 jer—1() Y MWVei)
S [ MY o> [ ifldo<oo O
=1 MOV 1) i=1 7/ MOV;

Definition 3.13.
(a) Eine Teilmenge S C M heifit

e integrierbar tuber M, falls die Funktion 1g: M — R integrierbar iiber M ist.
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e k-dimensionale Nullmenge, falls S integrierbar tiber M und fM lgdo =0 ist.

(b) Ist S C M integrierbar iiber M, so nennen wir vol,(S) := [,,1sdo das k-
dimensionale Volumen von S.

(c¢) Eine Aussage fir Punkte aus M gilt per Definition f.4i. auf M, wenn sie fir alle
Punkte bis auf eine Nullmenge in M gilt.

Satz 3.14. Seien f,h: M — R integrierbar tiber M. Dann gilt:
(a) Ist f < h fii. auf M, so folgt [,, fdo < [, hdo.
(b) Ist f = h fii. auf M, so folgt [,, fdo = [, hdo.

(c) Ist g: M — R eine Abbildung, so dass fir jede lokale Parametrisierung (U, V)
von M die Abbildung (g o ¢)\/gy, messbar ist und so, dass |g| iber M integrierbar

ist, dann ist g Gber M integrierbar und es gilt | [,, gdo| < [ |g|do.

Beweis. Ahnlich wie im Beweis von Satz 2.3 nach Ubergang zu lokalen Parametrisierungen.
O

Bemerkung 3.15. Seien (U;, V;,v;), i € N, lokale Parametrisierungen von M, und sei
K € M N (U;en Vi)- Es folgt sofort aus Definition und Satz 3.9 und Definition 3.13, dass
K genau dann eine k-dimensionale Nullmenge ist, wenn v; '(K NV;) fiir jedes i € N eine
Nullmenge ist. Es folgt:

e Jede Teilmenge einer k-dimensionalen Nullmenge wieder eine k-dimensionale Null-
menge.

e Eine Funktion f: M — R ist genau dann integrierbar iiber M, wenn sie iiber
M ~ K integrierbar ist. In diesem Fall gilt fM fdo = fM\K fdo.

Bemerkung 3.16. Ist f: M — R integrierbar iiber M, so schreiben wir anstelle von
[y f do im Folgenden auch

/Mf(x)do(x) bzw. /Mf(xl,...,:L’N)da(xl,...,xN).

Bemerkung und Beispiel 3.17.

(a) Sei M := S* C R3.

1. Die Menge K := {z € S? | 23 = 0 und z; < 0} ist eine Nullmenge in S2.
Um dies zu sehen, betrachten wir die stereographischen Projektionen 1) und
¢ aus Beispiel 7.44 in Mathe 2. Dann ist K C ¢(R?) U p(R?*) = S? und
v HK)={x € R? | 2 < 0,25 = 0} = ¢ }(K) eine Nullmenge im R?. Mit
Bemerkung 3.15 folgt, dass K C S? eine zweidimensionale Nullmenge ist.
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2. Ist f: S — R stetig, so gilt
(3.6) fdo= / / f(cos psin@, sin psin 6, cos #) sin 6 df de.
S2 -7 J0
Tatséchlich ist ndmlich f = fly + flx mit K wie in 1. und V = S?\ K. Ferner
ist f1y elementar integrierbar itber S? mittels der lokalen Parametrisierung
Y (—m,7m) x (0,71) =V, (¢, 0) = (cos psin b, sin psin b, cos ).
Fiir die Gramsche Determinante gilt dabei g, (¢, 6) = sin? 6, also folgt (3.6)
wie behauptet.
Spezielles Beispiel: Sei a := (0,0, s) € R® mit s > 1 und f: S — R definiert
durch f(z) := . Dann ist

|x—al2

fda—/ / f(cos psin @, sin psin @, cos #) sin 6 df de
52 -7 JO

— / / (cos? psin®f + sin® p sin® 6 + (cos  — 5)2)_% sinf df dy
—m JO

:/ / (sin29+c0820+s2—250050)_%sin9d9dg0

—T

/ / sin 0 40dy —
1+ s? —25(:089)

dz

z = cost
dz = —sin6 db

o / 1
—1 (1482 —232)5

/ 27r 5 1+ s2
\/g \/T 25 _

:j;?<_\/1+§5_28+\/1+j5+28> 2:((1+8) o)
4_7T_V012(S2)

s |a|2

Dieses Ergebnis hat eine physikalische Interpretation: Das elektrische Potential
(oder Gravitationspotential), welches von einer homogenen Ladungsverteilung
(oder Massenverteilung) auf einer Sphére erzeugt wird, entspricht dem Po-
tential, welches von einer Punktladung (oder Punktmasse) gleicher Gro8e im
Zentrum der Sphare erzeugt wird.

(b) Ein zu 1. entsprechendes Resultat erhélt man fiir stetige Funktionen f: S¥~! — R
mit allgemeinen Polarkoordinaten. Noch allgemeiner: Betrachtet man fiir f den
Definitionsbereich fiir r > 0

rSNTL = {z e RY | |z], = 1),
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so erhalt man
N=2: / fdazr/ f(rcosp,rsing)dy,
rS1 -7

N=3: /fdcr:rQ//f(rcosgpsin@,rsingpsin&,rcos@)sin@d@dgp,
rS2 -7 JO

NZ4 / de‘:T‘N_l/ / / f(PN(T,(,O,Ql,...,QN_g))X
rSN-1 - 0
%)

w
0

——
(N — 2)-mal

X sin 6y sin Oy . . .sin™ 2 0yn_odb; ... dOn_» dep,

wobei Py gegeben ist wie in Satz 2.22. Insbesondere gilt also fiir f: RY — R stetig:

RNf(x)dx:/ooorN*/:/ .../wa(PN(T,go,Ql,...,HN_Q))X
2)

™
0

—_—
(N — 2)-mal

X sin @ sin? 6, .. .sin® 20y _odb; ... dOn_odpdr

:/Oooer /SNI F(r- &) do(#) dr.

Definition 3.18. Der Schwerpunkt S(M) = (s1,...,sy) € RY einer k-dimensionalen
Untermannigfaltigkeit des RY ist definiert durch

1

i = zd y fi ,:1’.”’N’
s volk(M)/Mx o(x) ur 4

falls diese Integrale existieren. Ublich ist auch die folgende, vektorwertige Schreibweise:

1
S(M) = d RY.
M) = oD /Mx o(@) €
Beispiel 3.19. Sei U C RY~! offen und M := Graph f C R fiir eine C'-Funktion
f:=U — R. Dann wird M global parametrisiert durch ¢: U — M, ¥(z) = (z, f(z))
und es gilt

gu(x) = det Jy(2)"Jy(z) =1+ |Vf(z)[;  (Ubung!).

Im Falle der Existenz der Integrale gilt also

volN_l(M):/MlMdaz/U\/l—i-|Vf(x)|§ dx

und (vektorwertig)

s = | [ \re1vs dx}l [ s/t v e Y.
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Spezielles Beispiel:

Sei U := By(0) € R?* und f: U — R gegeben durch f(z) = /1 — |z[3. Dann ist
M := Graph f die obere Halbsphére mit voly(M) = 27. Fiir die zugehorige globale
Parametrisierung gilt gy (z) =1+ % = ﬁ Also ist S(M) = (0,0, s3) mit

1 1 2 1
T Ju 1—|z|3 2 2

dh. S(M) = (0,0,1).

Satz und Definition 3.20 (Rotationsflichen). Sei M C R x (0,00) C R? eine eindi-
mensionale Untermannigfaltigkeit und Ry := {(x,y,2) € R® | (z,\/y? + 2%2) € M} die
von M erzeugte Rotationsfliche (bzgl. der Rotation um die z-Achse). Dann ist Ry C R?
eine zweidimensionale Untermannigfaltigkeit und es gilt

(3.7) vola(Ryr) = 27?/ rdo(z,r) (Erste Guldinsche Regel).
M
Anschaulich: Das zweidimensionale Volumen von Ry; ergibt sich als Produkt aus der
»Linge von M “ (d.h. voly(M)) und dem Umfang des Kreises, der durch Rotation des
Schwerpunktes von M um die x-Achse erzeugt wird.

Beweis. Seien (U;, Vi, p;), i € N, lokale Parametrisierungen von M, so dass V = {V; |
i € N} eine Uberdeckung von M bildet, und sei {n; | j € N} eine der Familie V
untergeordnete glatte Zerlegung der Eins mit suppn; C Vi, fir alle j. Wir betrachten
A =R x {0} x (—00,0) und definieren

Vi={lmy2) eR | VP +22 eVipn A V=V,
i=1

sowie 1 U; = U; x (=, ) — RayNV; durch (¢, ) = (pin(t), pia(t)sing, p;o(t) cos ),
fir ¢ € N. Es folgt

pi(t) 0
Jy.(t,0) = | pia(t)sing  p;a(t)cosep
pia(t)cosp  —p;a(t)sing
und somit
(3.8) 9w (t,0) = |pi()]3pi2(t)* = pia(t)?g,.(t) > 0.

Insbesondere ist .Jy, injektiv fur alle (¢, ¢) € U,. Man zeigt leicht, dass v;: U, — Ry NV,
ein Homoomorphismus ist. Damit sind alle ; lokale Parametrisierungen fiir Ry und die
Mengen V; bilden eine offene Uberdeckung von Rj; . A. Analog kann man auch lokale
Parametrisierungen von R, in allen Punkten Rj;; N A konstruieren. Damit ist R); eine
zweidimensionale Untermannigfaltigkeit von R®. Es ist leicht zu sehen, dass die Menge
Ry N A eine 1-dimensionale Untermannigfaltigkeit ist und daher eine 2-dimensionale
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Nullmenge in Rj;. Nach Bemerkung 3.15 gilt vola(Rys) = vola(Ryr . A), und letzteres
werden wir jetzt ausrechnen.

Es sei v;: V — [0, 1] durch v;(x,y, 2) = n;(x, \/y? + 2% ) gegeben. Dann ist {; | j €
N} eine der Familie {17; | © € N} untergeordnete glatte Zerlegung der Eins. Fiir j € N
und i := k() haben wir

(3.8)
/ _do = /~ (v o)/ Gw = 27?/ (15 0 Pi)PiaN/Gp; = 2”/ r1; do.
Ry NV; U, U; MNV;

Dies liefert

e}

Z/ - ’yjda—27rZ/ mjda:27r/ rdo.
RJ\/[ﬂVN(]) Mﬂvm(]) M

Jj=1

vola(Ryr N A) = / do =
Ry NA

Man beachte: wir haben hier nicht die Endlichkeit der Integrale vorausgesetzt. Da wir
aber nur nichtnegative Funktionen integrieren, ergibt das trotzdem Sinn. Ist aber z.B. M
kompakt, so sind alle auftretenden Integrale endlich. ]

Beispiel 3.21. Sei 0 < r; < rp und M := {(z,7) € R x (0,00) | 2% + (r — r2)* = r}}.
Die Menge Rj; nennt man dann Torus. Nach Satz und Definition 3.20 gilt dann:

vola(Ryy) _/
o = Mrda(x,r).

Setzt man fiir t € (—ry, ;) die Funktion ry(t) := ry + \/r? — ¢2, dann gilt
M = Graph ry U Graph r_ U {(r,72), (=71,72)}.

Folglich gilt analog zu Beispiel 3.19

/Mrda(x,r)

zi/mr+@%/l+¢+@P(R%:/mr_@%/1+f_ﬁﬁ(ﬁ

—rq

:/)%+ 22, [1 T_ﬁw+/ (ra —y/ri — %)

/ =Tr1Co8P
,/ _t2

0 —ry sin(ep)

x /17 — 12 cos?(

Insgesamt folgt also voly(Ryy) = 4m2r rs.

5 di

—27’1T2

~dt = —rysinpde

:27’17“2

dt = 27“17‘2/ 1dt = 27wryrs.
() 0

Definition 3.22. Eine stetige Funktion v: M — RY heit Einheitsnormalenfeld (kurz:
ENF) auf M, wenn gilt:
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(i) v(p) € N,(M) fir alle p € M.
(i) |v(p)|e = 1 fir alle p € M.
Bemerkung und Beispiel 3.23.
(a) Ist v ein ENF auf M, so auch —v.
(b) Sei M = S¥=1 C RY. Dann ist ein ENF von M gegeben durch v(z) = .

(c) Sei allgemeiner M := h~!(c) fiir einen reguliren Wert ¢ einer C'-Abbildung
h:V — RN* welche auf einer offenen Teilmenge V' C RY definiert ist. Dann sind

|VV£‘1 ey VAiN—r_ Finheitsnormalenfelder auf M nach Satz 7.41 in Mathe 2.
1l2 VRN k|2

(d) Sei M := Graph f fiir eine C'-Abbildung f: U — R¥~* definiert auf einer offenen
Teilmenge U C R*. Dann sind fiir i = 1,..., N — k die Abbildungen

(=V/fi(z), e:)
V14V i)

Einheitsnormalenfelder von M, wobei hier e; € RV =% der i-te Koordinatenvektor
sei.

firzeU

vi: M — RN, vi(z, f(x)) =

Spezialfall: k = N — 1: Dann ist ein Einheitsnormalenfeld gegeben durch

(=V/f(z),1)

v: M — RY, v(z, f(x)) = TN

(e) (Lokale Einheitsnormalenfelder) Sei ¢p: U — M NV eine lokale Parametrisierung
einer zweidimensionalen Untermannigfaltigkeit des R3 und sei

01y x Ot 3
=— """ U —=R".
s |01 X D2,

Dann ist durch
vi MNV =R, vp)=p(p)

ein ENF auf M NV gegeben.

Satz und Definition 3.24. Sei Q C RY beschrinkt und offen. Wir sagen Q habe
einen C'-Rand, wenn zu jedem p € 0 eine offene Umgebung V- C RY won p und eine
Ct-Funktion h: V — R existiert mit

e ONV ={z eV |h(z) <0},
e (0 ist ein requldarer Wert von h.

Man nennt Q dann auch ein C'-berandetes Kompaktum. Ist dies erfillt, so gilt:

(a) 0QNV ={z €V |h(z) =0} und V Q= {z €V |h(z) >0}.
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(b) 9Q ist eine N — 1-dimensionale Untermannigfaltigkeit des RY .

(c) Es existiert genau ein ENF v auf 0Q derart, dass fir alle p € OS2 ein € > 0 existiert
mit

(3.9) p+tv(p) Q2 fird<t<e.

v heifst dueres Einheitsnormalenfeld von €.

Beweis. Zu (a): Sei h(x) = 0. Weil 0 ein regularer Wert von h ist, folgt v := Vh(z) # 0.
Fir kleines € > 0 liefert dies h(z + v) = h(z) + elvf; + o(¢) > 0 und h(z — ev) =
h(z) —elv3 +o(e) < 0,alsoz € VNON(RY Q) =90NV. Es folgt

(3.10) {z €V |h(z)=0}CoQnV.

Es ist klar, dass in (3.10) die umgekehrte Inklusion gilt. Damit ist die erste Aussage
gezeigt. Die zweite Aussage ergibt sich aus QNV = (QUIN) NV ={z c V | h(z) <0}
durch Negation.

Zu (b) und (c): Sei M := 9Q. Da M NV = h~'(0) nach (a), ist M NV eine (N — 1)-
dimensionale Untermannigfaltigkeit des R nach Satz 7.41 in Mathe 2. Durch Variation

von p erhdlt man die Aussage fur ganz M. Ferner ist N,M = Spann{vr(p)} mit v(p) =
Vh(p)
[Vh(p)|2

, wieder nach Satz 7.41 in Mathe 2. Wie im Beweis von (a) erhélt man € > 0 mit
p—tr(p) € Q und p+tv(p) €Q furt e (0,¢e).

Der normierte Vektor v(p) € N,M ist also durch (3.9) eindeutig festgelegt und hangt
in V' N M stetig von p ab. Es folgt, dass auf ganz M ein Einheitsnormalenfeld existiert,
welches (3.9) in jedem Punkt p € M erfiillt. O

Bemerkung 3.25. Man nennt Q C RY auch ein Kompaktum mit C*-Rand fiir k €
N U {oo}, wenn die Funktion % in Satz und Definition 3.24 eine C*-Funktion ist. Im Fall
k = oo spricht man von einem glatten Rand.

Beispiel 3.26. Sei VV C RY offen, h € C'(V) und ¢ € R ein regulirer Wert von h derart,
dass die Menge {x € V | h(x) < ¢} C V kompakt ist. Dann ist Q = {z € V | h(z) <
c} C V beschrinkt mit C'-Rand, denn fiir jeden Punkt z € 992 sind die Voraussetzungen
in Satz und Definition 3.24 mit der Funktion h — c¢: V' — R anstelle von h erfiillt. Ferner
ist das duflere Einheitsnormalenfeld von 2 global gegeben durch

1

v(z) = WVh(m) fir x € 09.

Spezielles Beispiel: Seien r,ay,...,ay > 0, h: RN — R gegeben durch h(z) = a;2? +
...+ ayzd und € := {z € RY | h(x) < r?}. Das so beschriebene Ellipsoid € hat einen
glatten Rand.

Noch Spezieller: Fiir a; = ... = ay =r = 1 ist £ := B;(0) C RY und 9€ = S¥~1. Das
duBere Normalenfeld von B;(0) ist gegeben durch v: V=1 — RN v(z) = z.
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Satz 3.27 (GauB’scher Integralsatz). Sei V C RN offen, Q C V ein Kompaktum mit
glattem Rand und v: 000 — RY das dufere Einheitsnormalenfeld von Q. Dann gilt

/ div F = / (F,v)do fiir alle F € C*(V,R™).
Q o0

(Erinnerung: div(F) = S0, 9 Fj.)

Bemerkung und Beispiel 3.28. (a) In der Situation von Satz 3.27 nennt man das

Integral

(3.11) / (F.v)do

den aus Q) austretenden Fluss des Vektorfelds F'.

Betrachtet man z.B. eine Fliissigkeitsstromung entlang eines durch £ € C1(R3, R3)
gegebenen Geschwindigkeitsfeldes, so kann man die lokale GroBe (F,v) do als die
Fliissigkeitsmenge interpretieren, welche das infinitesimal kleine Fléchenstiick do
pro Zeiteinheit nach aulen durchfliefit. Ist die Fliissigkeit inkompressibel, so muss
fir jedes Kompaktum Q mit C'-Rand der Gesamtfluss durch 02 in der Summe
Null ergeben: Mit dem Gauf’schen Integralsatz also

/ divF =0 fiir jedes solche (2,
Q

und dies liefert div ' = 0.

Im Umkehrschluss liegen im Fall div F' # 0 sogenannte ,,Quellen® oder ,,Senken'
vor (oder Bereich, in denen die Flussigkeit komprimiert oder expandiert werden
kann (vgl. Mathe II)).

¢

Sei F: RN — RY gegeben durch F(z) = z. Dann ist div F(z) = N fir alle .
Somit gilt fiir jedes Kompaktum Q C RY mit C*'-Rand:

Nvoly(Q) = / div F(z)dx = / (x,v(x))do(x).
Q 09

Im Fall Q := B;(0) C RY ergibt sich mit dem duleren ENF v: SV~ = 9B, (0) —
RY, v(z) = x der Zusammenhang:

27TN/2

voly_1(9B,(0)) = / o 1) = /6 o (52 40(2) = N YOI (BI0) = i

7]

Randbemerkung: Fiir jedes Kompaktum © mit C'-Rand und voly () = voly(B;(0))
gilt
vol N_l(aQ)
voly (2)
Bei vorgegebenem Volumen minimiert die Kugel also die Oberfliche unter allen
Kompakta mit C'-Rand.

>N (isoperimetrische Ungleichung)
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(c) Ein Koérper Q — mathematisch modelliert als ein Kompaktum mit C*-Rand —
befinde sich in einer Flussigkeit mit konstanter Dichte ¢, welche die Menge {z €
R? | 23 < 0} ausfiillt. Sei v: 9Q — R? das duBere ENF. Im Punkt x € 99 iibt
dann (in geeigneten Einheiten) die Fliissigkeit auf € den Druck c|z3| in Richtung
des ,inneren“ ENF —v(x) aus. Die Gesamtkraft, die auf den Korper wirkt, ist nun
gegeben durch (Vektorschreibweise)

K = (K, Ky, K3) = /{m crsv(x)do(z),

also fiir festes ¢ mit F(z) = z3e; :
K; = cxsvi(x)do(z) = c/ (F,v)do Satg 327 c/ div F.
o0 o0 Q

Es folgt K; =0 fiir ¢« = 1,2 und K3 = cfQ = cvoly(Q2). Auf den Korper wirkt
also eine Auftriebskraft in x3-Richtung, die der Gewichtskraft der verdringten
Fliissigkeit entspricht.

Definition 3.29. Sei 2 C RY offen. Wir definieren fiir k¥ € Ny U {oo} die Funktionen-
raume

nung k haben jeweils eine stetige Fortsetzung
auf €.

Korollar 3.§O (Partielle Integration und Greensche Formeln). Es sei Q C RN offen und
derart, dass Q0 ein Kompaktum mit C*-Rand ist. Sei v: 0Q — RY das dufere ENF von
Q.

(a) Fiir F € CYQ,RN) und f,g € CY(Q) gilt

/Vg, / (gF,v) da—/gdivF.
Q

Insbesondere gilt fiir alle i = 1,.

/ foig= | fovido - / G0.f.
Q o0 Q

CH(Q,RM) = {f c C*(Q,RM)

alle partiellen Ableitungen von f bis zur Ord—}

(b) Fiir u,v € C*(Q) gilt

/ Au= [ (Vu,v)do
Q o9

(Wir schreiben auch kurz O,u := (Vu,v) fir die x-abhangige Richtungsableitung in

Richtung v)
/(VU,VU> :/ v(Vu,v) da—/vAu
Q G Q

/(vAu — uAv) = / (vVu —uVo,v)do
Q G
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Beweis. Ubung, falls F € C'(V,RY), f,g € C'(V) und u,v € C*(V) gelten, fiir eine
offene Umgebung V' von ).
Im allgemeinen Fall betrachtet man fiir n € N

Q, = {x € Q| dist(z,00) > 1/n},

eine Ausschopfung von €2 durch offene Mengen mit kompaktem Abschluss. Dann hat €2,
einen Ci-Rand wenn n grof§ genug ist und die Aussagen gelten jeweils mit €2, statt €.
Man kann zeigen, dass dann alle Integrale tiiber €2,, und 02, fiir n — oo jeweils gegen
die entsprechenden Integrale tiber €2 und 02 konvergieren. O

Bemerkung 3.31. Ist v € CZ(Q), so ist auch 9;v, 0;0;v € Cc(Q) fiir alled, j =1,..., N.
Folglich gilt speziell fir u € C*(Q) und v € C%(Q2) nach Korollar 3.30 (siehe auch

Lemma 3.32 unten):
/(Vu, V) = —/vAu
Q Q

Nun zum Beweis des Gauf3’schen Integralsatzes.

Lemma 3.32. Sei Q C RY offen und i € {1,...,N}. Dann gilt:
(a) [o,0:f =0 fir alle f € CL(Q).
(b) [o90if = — [, [Oig fir alle f € CHY) und g € C(Q).

Beweis. Offensichtlich folgt (b) aus (a) durch Anwendung auf fg € C}(9).

Zu (a): O.E. sei Q = R", denn wir konnen f als C'-Funktion trivial auf RY \ U
fortsetzen. Ferner sei 0.E. i = 1 und R > 0 so grof3 gewihlt, dass supp(f) C (—R, R)Y
gilt. Fur festes 2/ = (z9,...,2y) ist dann

R
/ alf(xlax,) day = f(a, x’)lﬁiif‘R =0,
-R

mit dem Satz von Fubini also

R R
/ 8Zf:/ (‘),f:/ / alf(xl,...,xN)dxl...de:O. ]
RN (-R,R)N -R -R

Korollar 3.33. Sei Q CRY offen und F € C(Q,RN). Dann gilt [, divF = 0.
Beweis. Dies folgt direkt aus Lemma 3.32. O]

Satz 3.34 (Gauf’scher Integralsatz (1. Teil)). Sei Q C RN ein Kompaktum mit C"-Rand.
Dann existiert zu jedem p € Q eine offene Umgebung U = U(p) C RN derart, dass fiir

alle F € CHU,RY) gilt:
/ div F = / (F,v)do.
UnQ UnaQ
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Beweis. 1. Fall: p € Q. Mit U := 2 gilt dann

/ div F = / div P S = / (F,v)do,
QnU Q Unos

da supp(F) N o2 = 2.

2. Fall: p € 0. Nach dem Satz von der impliziten Funktion (vgl. Mathe II) existiert
(nach evtl. Umnummerierung der Koordinaten) eine offene Umgebung U’ C R¥~! von
p = (p1,...,pn_1), eine Intervallumgebung I = (a,b) C R von py und g € CY(U’, I) mit

9ONU = Graph g ={(y,9(y)) |yeU'} fuwU:=U"x1I.

O.E. gelte ferner UNQ = {(y,t) |y € U', a <t < g(y)}. Sei nun zunichst f € CH(U,R)
gegeben. Dann gilt mit dem Satz von Fubini:

9(y)
a = at , — : ’
[oosi= [ [ arwnaa= | swowa

weil f(y,a) = 0 gilt. Ist ferner i € {1,...,N — 1} und k¥ € C}(U’,R) definiert durch
k(y) = fag(y) [y, t)dt, so gilt

(y)
Oik(y) = f(y,9(y))0ig(y) + /9 ’ Oif (y,t)dt (Siehe Ubung Mathe IT).

Da nach Lemma 3.32 ferner [, 9;k(y) dy = 0 gilt, folgt

9(y)
| ooar= [ [ oswnaay == [ roam)oema

Fir F € C}(U,RY) folgt somit

N

fo =2,

i=1

- —Z_//Fi(y,g(y))aig(y) dy+/U/ Fx(y,9(y)) dy

_ / <F(y,g(y)), (_vlg(y)>> dy
Bemerkung und Beispiel 3.23(d) U,<F(y’g(y)>’ ,/(y7g(y))>\/mdy

= / (F,v)do,
Unog

wie behauptet. Hier haben wir verwendet, dass die Gramsche Determinante zu Para-
metrisierung : U’ — U NI, y — (y,9(y)) gegeben ist durch y — 1+ |Vg(y)|3 (vgl.
Beispiel 3.19). O
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Beweis von Satz 3.27. Sei Q ein Kompaktum mit C'-Rand. Nach Satz 3.34 und aufgrund
der Kompaktheit von 2 existieren offene Mengen Uy, ..., U mit 2 C Ule U; CV und
derart, dass fiir jedes i € {1,...,k} und alle f € C}(U;, RY) gilt:

(3.12) / div f = (f,v)do.
nu; Uinon

Sei {n; | j € N} eine den Mengen Uy, ..., Uy, untergeordnete Zerlegung der Eins, so dass
n; € C2(Usj)) gilt. Sei ferner F € CH(V,RY) und sei F7 € C}(Uyj), RY) definiert durch
FJ = n;F fir j € N. Dann ist F iiber Q integrierbar und (F, v} iiber die Untermannigfal-
tigkeit 0€2 integrierbar, da diese Funktionen dort stetig sind und die Mengen kompakt
sind. Es gilt wegen (3.12):

/divFﬂ‘z/ divFj:/ (Fj,y>da:/ (FI.v)do.
Q QQUK(J-) Uﬁ(j)ﬂaQ oN

Da F' auf Ule U; mit Z;; FJ iibereinstimmt, folgt nun mit dem Satz von Lebesgue auf
Q und auf 992 (Ubung!)

div F = /diVFj: / Fi vy da:/ F,v)do. O
/Q ]Zl Q ]ZI 8Q< ) 09< )

3.1 Der klassische Integralsatz von Stokes

Im Folgenden betrachten wir spezielle Mengen in R3.

Bemerkung 3.35. Ist f € C*(R? R?), so gilt divrot f = 0 und folglich gilt fiir jedes
C'-berandete Kompaktum € C R? nach Satz 3.27

/ (rot f,v)do = 0.
20

Zu beachten ist hierbei, dass 0€) zwar eine lokal 2-dimensionale Flache ist, aber keinen
,2Rand“ besitzt. Im Folgenden wollen wir Flachen untersuchen, die einen solchen ,,Rand*
besitzen.

Definition 3.36 (Spezialfall einer berandeten Fliche). Seien U C R? offen, ¢ €
C?*(U,R?) eine Parametrisierung und G C U ein C'-berandetes Kompaktum, so dass 0G
das Bild einer Kurve v € C*([a, b], U) mit folgenden Eigenschaften ist:

(i) 4(t) # 0 fiir alle ¢ € [a, b],

(i) ¥|(ap) ist injektiv und y(a) = v(b),
(iii) v durchlauft den Rand von G gegen den Uhrzeigersinn, d.h. W
dem &dufleren Einheitsnormalenvektor an G im Punkt v(¢) € 0G.

entspricht

o4



Dann ist offensichtlich 7|, ;) eine Parametrisierung von G \ {7(a)}. Das Bild M := ¢(G)
heiit Fliche in R mit orientiertem Rand, und man bezeichnet mit OM = ¢ (9G) den
Rand von M, eine 1-dimensionale Untermannigfaltigkeit (weil G eine solche ist). Die
Kurve 9 o 7| (a4 ist eine Parametrisierung von dM \ {¢(y(a))}. Man beachte, dass hier

OM nicht topologisch zu verstehen ist (dann wéire OM = M) sondern im Sinne der
Theorie der Untermannigfaltigkeiten.

Satz 3.37. Mit den Bezeichnungen aus Definition 3.36 sei M eine Fldche mit orientier-
tem Rand. Ferner betrachten wir auf M das Einheitsnormalenfeld

| )  01(w) X Oxt(7)
v: M — 5%, I/(p> = |81@/J($) % 82¢(x)|2

Dann gilt fiir jede offene Menge V- C R® mit M C 'V und jedes Vektorfeld f € C*(V,R?)

(3.13) /M<rotf,u>da:/wf=: /9M<f,7)ds,

wobei T den Tangentenvektor der Randkurve i o vy bezeichne.

fiir x =4~ (p).

Bemerkung 3.38.
(a) Der Ausdruck [, o /15t das Kurvenintegral des Feldes f lings ¢ 0.

(b) Nach Wahl von ~, liegt die Menge G stets links von einem Betrachter, der sich
entlang v auf dem Rand von G bewegt.

(c) Satz 3.37 gilt allgemeiner fiir C''-berandete orientierbare zweidimensionale Unter-
mannigfaltigkeiten M des R3, d.h. falls auf M ein ENF existiert. Dies ist nicht
immer gegeben; z.B. besitzt das Mdbiusband kein ENF'.

(d) In der Theorie der Differentialformen auf Mannigfaltigkeiten wir der allgemeine
Satz von Stokes bewiesen, welcher keine Einschrénkung der Raumdimensionen,
weniger Differenzierbarkeit (statt ¢ € C?) und schwéchere Eigenschaften von M
voraussetzt.

Wir benotigen fiir den Beweis folgendes Lemma

Lemma 3.39. Seien U C R? offen, v € C*(U,R?), V C R? offen mit (U) C V und
f e CYV,R?). Dann gilt

((rot f) 01, 1) X Opyp) = O1(f 0 1p, Dath) — Oo(f 0¥, O1%p)  auf U.

Beweis. Nachrechnen. O

Beweis von Satz 3.37. Unter den Voraussetzungen und der Wahl der Parametrisierung
P gilt
gy = |01 x 82¢|§-
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Ferner ist das duflere ENF von G gegeben durch

_ 1 Ya(t)
w= 1) = Eon (—%(t)) '

Es gilt g,(t) = |¥(¢)[3. Wir setzen o := 1) 0. Es folgt mit dem Satz von Gauf (Satz 3.27)
und Lemma 3.39

. o O x Da1p
/M<rotf, ) da—/G<(rotf) b M‘) 100 x Ba|

= [ (ot o w000 x 0w) = [ (@0l 0.000) = 0u( 0 .000)
= L (auom) = [ACTena) m) o

/ab<<f0a aﬂw)wﬂf o, 01t o 7>| ’)|’Y|2

=/ab<foa7d>=/af,

wie behauptet. O
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4 Funktionentheorie

4.1 Erinnerung an die komplexen Zahlen

Definition 4.1. Betrachte R? := R x R = {(a,b) | a,b € R} mit der Addition und
Multiplikation:

(a1,b1) + (az,be) == (a1 + as, by + bo)

4.1
(1) (ay,b1) - (az, be) := (araz — bibe, arbe + byas)

fir (a1,0y), (az,bs) € R? Dann ist R? ein kommutativer Kérper mit Nullelement 0 :=
(0,0) und Einselement 1 := (1,0) (Nachrechnen!). Wir nennen ihn den Korper der
komplexen Zahlen (oder auch die komplexe Zahlenebene) und bezeichnen ihn mit C.
Das Einselement ist der erste kanonische Basisvektor von R?. Den zweiten kanonischen
Basisvektor bezeichnen wir mit i := (0, 1) und nennen ihn die imagindre FEinheit. Mit
obigen Multiplikationsregeln folgt sofort i =i-i = —1 (nachrechnen!). Wir schreiben
die Elemente von C = R? in der Regel als reelle Linearkombinationen der kanonischen
Basisvektoren, also a 4+ bi = a + ib = (a, b) fir a,b € R. Dann folgt (a; + ib1)(as + iby) =
a1 — blbg + i((llbg + ale).

Der reelle Korper R ist als der Untervektorraum R x {0} in C = R? eingebettet. Wir
werden spéater zeigen, dass C der kleinste algebraisch vollstdndige Korper ist, der R
als Unterkorper enthélt. Diese Tatsache ist einer der Griinde, die komplexen Zahlen
einzufiihren.

Definition 4.2. Fir z = a +ib € C mit a,b € R sei
(a) Re(z) := a der Realteil von z, Im(z) := b der Imagindrteil von z,
(b) |z| := va? 4+ b? der Betrag von z (ist dasselbe wie die Euklidische Norm |(a, b)|2),

(¢) Z:=a —1ib die zu z konjugiert komplexe Zahl. Die Abbildung C — C, z — Z heift
komplexe Konjugation.

AuBerdem verwenden wir den Begriff
(d) C :=C~ {0}, die punktierte komplexe Zahlenebene.

Bemerkung 4.3. Der Korper C ist nicht angeordnet, denn in jedem angeordneten
Korper K ist 22 + y? > 0 fiir 2,y € K\ {0}, wihrend in C z.B. 1% + i* = 0 gilt. Das
Symbol ,,<* ergibt also nur fiir reelle Zahlen Sinn.

Satz 4.4. Fir z,w € C gilt:
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(g) |z 4+ w| < |z| + |w] (Dreiecksungleichung)
() [z] = Jwl| < |z — w|

Auflerdem sind die Kérperverknipfungen C x C — C und die Abbildungen z — Re(z),
z = Im(2), z— z und z — |z| stetig.

Beweis. (a)-(h) folgen unmittelbar aus den Definitionen und wurden in Mathe I bewiesen.
Wir verwenden die Norm ||(z,w)|| == |z| + |w| (Erinnerung: alle Normen in C x C = R*
sind dquivalent). Es folgt fir z;,w; € C, i =1,2:

(21 4+ w1) = (22 + w2)| < |21 — 22| + w1 — wa| = [|(21, w1) — (22, w2
und
|z1w1 — 22wa| < [z1|[wr — wa| + [wal|21 — 22| < max{|z1], [wal}| (21, w1) = (22, w2)]|-

Das zeigt die lokale Lipschitz-Stetigkeit der Korperverkniipfungen. Re und Im sind die
reell linearen Koordinatenprojektionen in R? und somit stetig. z = z — 2iIm(z) zeigt,
dass z — Z stetig ist. Die Stetigkeit von z — |z| folgt aus (h). O

Bemerkung 4.5. (a) Aus Satz 4.4 folgt

z

:M und il :é fir z,w € C, w # 0.
|w| w w

. S| Z
(b) FurzE(Cgllt;:W.

(c) Aus Satz 4.4(g) und (h) folgt ||z| — |w|| < |z £ w| < |2] + |w| fir z,w € C.
Definition 4.6. (a) Fiir z € C und € > 0 sei
B, (z2) ={weC||z—w|<r} (offene r-Kreisscheibe um z)

B,(z) ={weC||z—w| <r} (abgeschlossene r-Kreisscheibe um z).

(b) Eine Teilmenge M C C heifit beschrankt, falls R > 0 existiert mit M C Bg(0).
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Satz 4.7. Sind z,w € C, z # w, so ist B.(z) N B.(w) = & fir e € (0, @]

Beweis. Siehe Mathe 1. O

Definition 4.8. Sei (¢,)nen, € C eine Folge. Fiir z, zy € C bezeichnen wir eine Reihe
der Gestalt

(4.2) > enl(z — z)"

n=0

Potenzreihe und nennen zo Entwicklungspunkt. Wir definieren den Konvergenzradius der
Potenzreihe:

(4.3) p = (limsup ’(/\c_no_l € [0, oc].

n—oo
Hierbei verwenden wir die Konvention é = (0 und % = 00.

Satz 4.9. Seien (cy)nen, € C eine Folge, zg € C und p der Konvergenzradius der
formalen Reihe p(z) = >~ cn(z — 20)". Dann gilt:

(a) Fir aller € [0, p) konvergiert p(z) absolut gleichmdfig auf B, (z0) und die Abbildung
p: By(z0) — C ist gleichmdfig stetig.

(b) Fir alle z € B,(20) konvergiert p(z) absolut und die Abbildung p: B,(z) — C ist
stetig.

(c) Fir z € C\ B,(z) divergiert p(z).

(d) Fir z € 0B,(2) kann keine allgemeingiltige Aussage tiber die Konvergenz der
Reihe p(z) gemacht werden.

Beweis. Siehe Mathe 1. O

Definition 4.10. (a) Wir definieren die komplexe Exponentialfunktion als

exp: C — C, z > exp(z) = Z

n=0

Z’I’L

Ha

denn diese Reihe hat den Konvergenzradius oo. Wir schreiben auch e* anstelle von
exp(z).

(b) Wir definieren die Sinus- und Kosinusfunktion auf C als

. . 1 iz —iz - n Z2n+1_
sin: C— C,  zwsin(z) := Z(e —e) _nzzo(_l) (2n + 1)!
Co T, zmcon(s) = b (4 o) = Y (1
CcoS: z Cos(z) := < (e € = - :

’ 2 — (2n)!
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Satz 4.11. (a) Flir z1,2, € C gilt: €212 = e*1e2,

(b) Fiir alle z € C gilt '
e¥ =cosz +isinz.

Im Spezialfall = = ¢ € R nennt man diese Beziehung die Eulersche Formel.
Insbesondere ist || =1 fir alle p € R.

(¢) Aus (a) und (b) folgt fiir alle z € C:
"2 = e%e®™ = ¢*(cos(27) + isin(27)) = €7,
d.h. die Funktion exp ist 2mwi-perodisch.
Beweis. Siehe Mathe I. O

Bemerkung 4.12 (Polarkoordinatendarstellung der komplexen Zahlen). Fiir jedes z =
a+ib € C existiert genau ein ¢ € (—m, 7] und r > 0 mit 2z = re'?. Dabei ist |z| = r und

arccos (ﬁ) , fir b > 0,
z
o = Arg(z) := .
— arccos (H) , fur b <0,
z

heifit der Hauptwert des Arguments. Insbesondere folgt, dass fir jedes r > 0 die Abbildung
{zeC||z| =71} = (—m, 7], 2z +— Arg(2)
bijektiv ist.

4.2 Holomorphe Funktionen und Kurvenintegrale in C

Definition 4.13. Ist G C C offen und nichtleer, f: G — C eine Abbildung und 2, € G,
so heifit f (komplez) differenzierbar in zy, wenn

o 1) = (o)
Z—20 z — ZO
existiert. Der Grenzwert wird mit f’(zy) bezeichnet und heifit komplexe Ableitung von f

m zg.

Bemerkung 4.14. Aufgrund der Identifikation von C mit R? kénnen wir eine Abbildung
f: C — C auch als Abbildung f: R? — R? interpretieren. Ist die Abbildung f =
(u,v): R? — R? total differenzierbar in einem Punkt z = (z,y) € R?, so gilt

0= (15 40)

Hier schreiben wir u, anstelle von 0yu und u, anstelle von 0yu und entsprechend fiir v.
Im Folgenden wollen wir den Zusammenhang zwischen ,, f ist komplex differenzierbar*
und ,, f ist total differenzierbar” untersuchen.
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Definition 4.15. Eine Abbildung 7T: C — C heifit komplex linear, wenn T beziiglich
des Skalarkérpers C linear auf dem komplexen Vektorraum C ist, d.h. wenn 7'z 4+ Aw| =
Tz 4+ NTw fir alle z, w, A € C gilt. Insbesondere ist dann 7" auch reell linear, d.h. linear
beziiglich des Skalarkorpers R.

Bemerkung 4.16.

(a) Ist f: R? — R? stetig differenzierbar, so ist die Ableitung df(a) reell linear fiir alle
a € R2

(b) Die komplexe Konjugation ist reell linear, denn fiir alle r € R und z,w € C gilt:

Zz+r-w=zZ+r-w=z+r-w=7zZ+rw.

Es gilt aber fiir z € C: iz = iz = —iZ # iz, d.h. die komplexe Konjugation ist nicht
komplex linear.

Beachten Sie bitte die nachtrigliche Ergénzung (Periodizitat von exp) in Satz 4.11(c).
Lemma 4.17. Es sei T: C — C eine reell lineare Abbildung. Dann sind dquivalent
(i) T ist komplez linear;
(i) Ti=iT1;
(iii) Es existiert ein z € C mit Tw = zw fir alle w € C.

Insbesondere ist T als lineare Abbildung R* — R? eine Drehstreckung, d.h. T = r(5n ‘Cgisnf)
mit r € [0,00) und ¢ € (—m, 7.

Beweis. Die Implikationen (i)=>(ii) und (iii)=-(i) sind offensichtlich. Wir zeigen (ii)=-(iii):
Sei z := T'1. Es folgt fiir w = a + ib mit a,b € R:

2w = az +ibz = aTl1 4+ ibT1 = aT1 4 bTi = T[a + ib] = Tw.
Schliellich sei z = re'¥ mit (r, ¢) € [0,00) x (—m, 7| gemafl Bemerkung 4.12. Es folgt
2w = r(cos ¢ +ising)(a+ib) = r((acosp — bsinp) +i(asing + beos @),
also die letzte Behauptung. O]

Satz 4.18. Es seien G C C offen und nichtleer, f: G — C eine Abbildung und zy =
xo + iyo € G. Sei ferner u := Re(f) und v :=Im(f). Dann sind dquivalent:

(i) f ist in zy komplex differenzierbar.

(ii) f ist in zo total differenzierbar und das totale Differential df(zy): C — C ist
C-linear.
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(iii) f dstin zo total differenzierbar und es gelten die Cauchy-Riemann-Differentialgleichungen:

u(20) = vy(20),

(44 va(20) = —ty(z0).

Sind diese Bedingungen erfiillt, so gilt
df(20)z = f'(20)z fiir alle z € C
und
f'(20) = uz(20) + ivz(20) = vy(20) — fuy(z0) € C.

Beweis. (i) = (ii)“: Durch Th = f'(z9)h fir h € C wird eine C-lineare Abbildung
definiert und es gilt:

. |f(zo+h) = f(20) =Th| .. |f(20+h)— f(20) / _
}}%E) B = h — ) =0

»(i) = (1)“: Da T := df(z) C-linear ist, existiert A € C mit Th = Ah fiir alle h € C.
Nach Voraussetzung gilt dabei

0 = lim | f(z0 +h) — f(20) — Th| — lim

h—0 |h| h—0

f(z0 + 1) = f(20)
h

-3

Es folgt also, dass f in zg komplex differenzierbar ist mit f'(zp) = .
(i) < (iii)“ T := d f(zp) wird dargestellt durch die Jacobimatrix

us(Z0)  y(20)
vz(20) vy(20) )
Also gilt fir die 1 € C mit der Darstellung ({) und i € C mit der Darstellung (9):
B 1\ (us(20)) _ :
Ti=T (O) = (%(Zo) = uy(20) + 1v4(20)

und somit i7'1 = —v,(z) + iuz(20) und

TieT (?) _ (Zz((jg;) — wy(20) + vy (20).
Folglich gilt:

Lemma 4.17
=

(44) & Ti=iT1 T ist komplex linear. O

Beispiel 4.19. (a) Die komplexe Konjugation ist in keinem Punkt z € C komplex
differenzierbar: Sei f: C — C, f(z) = Z. Dann gilt f(x +iy) =z — iy fir z,y € R,
also u(z,y) = Re(f)(z,y) = = und v(z,y) = Im(f)(z,y) = —y. Es ist dann
uy =1 # —1 = v,(z,y). Folglich sind die Cauchy-Riemann-Differentialgleichungen
fiir kein z € C erfillt und somit ist f nirgendwo komplex differenzierbar.
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(b) Die Abbildung z — Re(z) und z +— Im(z) sind nirgendwo in C komplex differen-
zierbar (Ubung).

Lemma 4.20. Es seien G C C offen und nichtleer, f,qg: G — C Abbildungen, welche
komplex differenzierbar in zy € G sind. Dann gilt:

(a) f und g sind stetig in z.

(b) f+ g ist komplex differenzierbar in zo mit (f + g)'(20) = f'(20) + ¢'(20)-
(c) Fir X € C ist \f komplex differenzierbar in zy mit (A\f) (z0) = Af'(20).
(d) f-g ist komplex differenzierbar in zy mit

(f-9)(20) = f'(20)9(20) + f(20)9'(20)-

(e) Ist g(zo) # 0, so ist die Abbildung 5: {z € G|g(z) #0} = C komplex differenzier-
bar in zy und es gilt

(f), _ ['(20)9(20) — f(20)9'(20)

g 9 (20)

(f) Ist H C C eine offene Menge mit f(G) C H, h: H — C eine Abbildung so
dass h komplex differenzierbar in h(f(z)) ist, dann ist ho f: G — C komplex
differenzierbar in zy und es gilt

(ho f),(Zo) = h/(f(zo))f,(zo)-

Beweis. Wie in Mathe 1. O

Definition 4.21. Es sei G C C offen und nichtleer. Eine Abbildung f: G — C heifit
holomorph, wenn sie in jedem Punkt z € G komplex differenzierbar ist. Eine in ganz C
holomorphe Funktion heiflt ganze Funktion.

Satz 4.22. Seien (¢)nen, € C und p > 0 der zugehorige Konvergenzradius. Sei ferner
2o € C und f: B,(z0) = C gegeben durch f(z) =Y " ca(z — 20)". Dann gilt:

(a) f ist holomorph in B,(z) und es gilt
f'(z) = Z nep(z — 20)" " fir z € B,(z).
n=1

(b) f ist auf B,(z0) beliebig oft komplex differenzierbar und es gilt ¢, = %
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Beweis. Zu (a): Ohne Einschrankungen sei zg = 0. Nach Mathe I besitzt die Potenzreihe
> o> ne,z" ! ebenfalls den Konvergenzradius p. Sei nun B := B,(0) und p € B und

hn: C — C definiert durch  h,(2) = 2" 1+ 2" 2p+... 4 2p" 2 +p" L.

Fiir s € (|p, p) und z € B,(0) gilt dann

o o0
Z!cnhn(z)\ < Z!cnms"’l < 0.
n=1 n=1

[e.e]

Somit konvergiert die Funktionenreihe > | ¢, h, geméf Satz 4.9 gleichméaBig auf B,(0)
gegen eine stetige Funktion h: Bs(0) — C. Es folgt also fiur z € B(0):

n

F(z) = f(p) = lim Y ep(2" —p) = lim Y ez = p)hul(z) = (= = p)h(2).
k=1 k=1

Somit existiert

- fE)-f) S S =
'(p) =1 =lim h(z) = h(p) = Y cuhn(p) = D"
f'(p) = lim S22 = lim (=) = h(p) ; cahn(p) ; neyp
wie behauptet.
(b) folgt nun durch wiederholte Anwendung von (a). O

Bemerkung 4.23. Eine Funktion f: U — C auf einer offenen Menge U C C wird
auch analytisch genannt, wenn es zu jedem zo € U ein r € (0, dist(z, OU)] gibt, so
dass f in B,.(z) durch eine Potenzreihe mit Entwicklungspunkt z, dargestellt werden
kann (und somit beliebig oft differenzierbar ist). Die Aussage von Satz 4.22 liefert, dass
analytische Funktionen auch holomorph sind. Die folgenden Abschnitte werden sich damit
beschéaftigen, zu zeigen, dass jede holomorphe Funktion analytisch ist, also lokal als Reihe
geschrieben werden kann und somit beliebig oft differenzierbar ist.

Beispiel 4.24. (a) Alle komplexen Polynome sind in C holomorph. Eine rationale
Funktion f = g fir zwei komplexe Polynome P, @) ist holomorph in C\ Ng, wobei
Ng ={2€ C|Q(z) =0} C C die Nullstellenmenge von @ ist.

(b) exp, sin, cos, sinh und cosh sind nach Satz 4.22 holomorph in C. Die Ableitungen
haben dieselbe Form wie aus der reellen Analysis bekannt.

(¢) Die Funktion f: C — C, f(z) = exp (—2) fiir z # 0 und f(0) = 0 ist holomorph
in C, aber sie ist nicht komplex differenzierbar in 0. Es gilt jedoch: |z € C®(R)!
(Ubung).

Definition und Satz 4.25. Seien a < bund f: I — C stetig. Dann sind Re f und Im f
auch stetig. Wir definieren das Riemann-Integral von f tiber I als

/abf::/abRef+i/abImf.

Es hat die folgenden Eigenschaften:
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b
(a) Die Abbildung C([a,b],C) — C, f — / f, ist komplex linear.

b)ﬁ—/abf

(c) Es gelten die Hauptsétze der Differential- und Integralrechnung, genauso wie fiir
reellwertige Funktionen.

(d) Ist ¢: [a,b] — R stiickweise stetig differenzierbar (per definitionem impliziert dies
Stetigkeit), so gilt fiir eine stetige Funktion g: ¢([a, b]) — C:

b w(b)
/ (go) = g.

¥(a)

/abf S/ab|f|~

Beweis. Die Paragraphen (a)—(d) beweist man mit den entsprechenden Resultaten fur
reellwertige Funktionen, angewendet auf Real- und Imaginarteil. Wir zeigen (e): Der Fall

f;f = 0 ist trivial. Fiir fabf # 0 sei p == — Arg (fab f). Es folgt

el 1o )
_/abRe(ei“’f)S/ab|eiwf‘—/ab|f|' H

Definition 4.26. Sei U C C offen und nichtleer und v: [a,b] € R — U eine stetige
Abbildung, auch Weg genannt.

= ei(p

(a) Wir definieren |y| := v([a, b]) als die Spur von .

(b) v heiBt Integrationsweg, wenn =y stiickweise stetig differenzierbar ist, d.h. wenn eine
Zerlegung a = tg < t; < ... < t,, = b von [a, b] existiert derart, dass ’y|[tk—17tk} stetig
differenzierbar ist fir £k =1,...,m.

(c) Ist 7 ein Integrationsweg wie in (b), so setzen wir

Z / ()] dt (Lange von 7y)

Ist ferner f: |y| — C stetig, so definieren wir das (kompleze) Wegintegral von f

langs v durch - t
[1=[r@a=3 [ raapima

Man kann nachweisen, dass diese Definition unabhéngig ist von der Wahl der
Zerlegung.
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(d)

Wir nennen einen Weg ~y geschlossen, falls v(b) = v(a) gilt.

Beispiel 4.27.

(a)

(b)

Die Verbindungsstrecke y: [0,1] — C, y(t) := (1 — t)z + tw zwischen zwei Punkten
z,w € C ist ein Integrationsweg. Man schreibt auch [z, w] anstelle von v bzw. |v]
fur den Weg ~. Es gilt 4(t) = w — z fir ¢ € [0,1] und

1 1
/ dx:/(w—z)dt:w—z und L([z,w]):/|w—z\dt:]w—z|.
[z,w] 0 0

Seien @ € C und r > 0 und v: [0, 27] — C definiert durch () = a+re'. Dann ist v
ein geschlossener Integrationsweg und es gilt ¥(t) = ire', also L(y) = 027r rdt = 2mr.
Ferner gilt fiir n € Z wegen Satz 4.11(c):

i/ dt = 2mi, n=—1.
0

Im Falle dieses speziellen Kreisweges schreiben wir anstatt f7 im Folgenden auch
fBBT(a)' Also insbesondere f&Bl(O) % dz = 27i.

Ist U C C offen und ~: [a,b] — C ein geschlossener Integrationsweg in C, so dass
|7| = OU gilt, dann sagen wir auch, v durchlduft OU in positivem Sinne oder - ist
ein positiv orientierter Randweg, wenn U im Sinne der Laufrichtung von v immer
nur links von 7 liegt, d.h. dass bis auf endlich viele ¢ € [a, b] jeweils v(t)+¢€iy(t) € U
und 7y(t) — €if(t) € C\ U fir hinreichend kleine € > 0 gilt. Dies trifft insbesondere
auf v aus (b) als Randweg von B,(a) zu.

Satz 4.28 (Zusammenhang zwischen dem reellen und dem komplexen Kurvenintegral).
Sei v: |a,b] — C ein stetig differenzierbarer Weg und sei f: |y| — C stetig. Seien ferner
u:= Re(f) und v :=Im(f). Dann gilt

=)L)

wobei die Integrale auf der rechten Seite reelle Kurvenintegrale im Sinne der Mathe 11
sind. Dabei fassen wir v als Kurve in R? auf.

Beweis. Dies folgt direkt aus

Re((f ©7)3) = (woy) Red — (voy) Im4,
Im((f 07)7) = (wo ) Im+ + (v o 7) Re¥

und"y:(Rm). O

Im~
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Satz und Definition 4.29. Sei v: [a,b] — C ein Integrationsweg. Dann gilt:
(a) Die Abbildung C(|v|,C) — C, f fﬂ{ f, ist komplex linear.
(b) Firy='(t) :=y(a+b—1),t € [a,b], und f € C(|7],C) gilt [, f=—[ f und
L(y™1) = L(3).

(c) Ist n: [e,d] — C ein weiterer Integrationsweg, so dass n(c) = v(b) gilt, so ist
v-n:la,b+ |d—c|] = C ein Integrationsweg, definiert durch ~ - n(t) := ~(t) fir
t € la,bl und v-n(t) :==nt—b+c) firte (b,b+|d—cl|]. Es gilt

[ o= [ns [n
7 gl U

fir stetige Funktionen h: |y| U|n| — C. Ferner gilt L(~y-n) = L(v) + L(n).

(d) Ist A ein abgeschlossenes Dreieck in C, d.h. die konvere Hulle dreier Punkte
20, 21, 22, S0 bezeichnen wir mit A den geschlossenen Dreiecksweg [zo, 21] - [21, 22] -
(22, 20], welcher den Rand von A durchlduft.

Beweis. Leichte Ubung. O
Satz 4.30. Sei v ein Integrationsweg.

(a) Fir eine stetige Funktion f: |y| — C gilt

/ f‘ < L(7) H|181X| 1l (Standardabschéitzung).
. vy

(b) Seien f,: |y] = C, n € N stetige Funktionen derart, dass die Folge (f,)n gleichmd-
Big gegen f: |y| — C konvergiert. Dann ist

/ f=1lim [ f,.
~ n—oo ~
Beweis. Ahnlich zu den analogen Aussage in Mathe I bzw. Mathe II., unter Verwendung

von Definition 4.26. O

Definition 4.31. Sei U C C offen und nichtleer und f: U — C eine Funktion. Eine
holomorphe Funktion F': U — C heifit Stammfunktion von f in U, falls F' = f ist.

Definition 4.32. Eine offene, nichtleere Teilmenge U C C heifit wegzusammenhdngend,
wenn zu je zwei Punkten z, w € U ein Integrationsweg ~: [0,1] — U existiert mit v(0) = z
und y(1) = w. In diesem Fall nennen wir U ein Gebiet.

Satz 4.33. Sei U C C offen und nichtleer, f: U — C eine Funktion und F: U — C
eine Stammfunktion von f. Dann gilt:
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(a) Ist~y: [a,b] — U ein Integrationsweg, so gilt
[ £=F60) - Forta).
y

Insbesondere gilt dann f,y f =0, falls v geschlossen ist.

(b) Ist U ein Gebiet, so unterscheidet sich jede weitere Stammfunktion von f nur um
eine Konstante von F'.

Beweis. Zu (a): Ohne Einschrankungen sei v stetig differenzierbar (durch stiickweises

betrachten von 7). Ist h:= F ov: [a,b] — C, so gilt h = (f 0 7)%, also

/ f = / (f 074 = h(b) — h(a) = F(+(b)) — F(x(a)).

Zu (b): Sei G: U — C eine weitere Stammfunktion von f und sei zyp € U fest gewéhlt.
Dann gilt fiir beliebiges z € U mit einem Integrationsweg ~v: [a,b] — U von zy nach z:

F(2) — F(z) & /f = G(2) — G(x0).

Es folgt (b). O

Korollar 4.34. Ist G C C ein Gebiet und f: G — C holomorph mit f' =0 auf G, so
ist f konstant in G.

Beweis. Dies folgt direkt aus Satz 4.33(b), da 0 eine Stammfunktion von f ist. O

Definition 4.35. Eine offene Menge GG C C heiflt Sterngebiet, wenn es zg € G gibt mit
[20,2] C G fur alle z € G. In diesem Fall nennt man z, auch ein Sternzentrum von G
(vgl. Mathe II).

Bemerkung und Beispiel 4.36. (a) Jeder offene Ball B,(a), a € C und r > 0 ist
ein Sterngebiet und jeder Punkt z € B,(a) ist ein Sternzentrum.

(b) Jedes Sterngebiet in C ist ein Gebiet.

(c) Die geschlitzte Ebene C\ {z € R | x < 0} ist ein Sterngebiet und jeder Punkt
z € C mit Im(z) = 0 und Re(z) > 0 ist ein Sternzentrum.

(d) C ist kein Sterngebiet, denn fiir jedes zp € C ist (20, —20] £ C.

Beachten Sie bitte die Ergénzung Beispiel 4.27(c), in der der Begriff im positiven Sinne
durchlaufener Rand bzw. positiv orientierter Randweg erklart wird.

Satz und Definition 4.37. Sei G C C ein Gebiet und f: G — C stetig.

(a) Aquivalent sind
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(i) f besitzt eine Stammfunktion.
(ii) f”/ f =0 fir jeden geschlossenen Integrationsweg v in G.

Gilt dies, so nennen wir f integrabel (in G).

(b) Ist G ein Sterngebiet, so ist f genau dann integrabel, wenn gilt:

(4.5) f=0 fiir alle A C G.
oA

(c) Erweitertes Lemma von Goursat: Ist G ein Sterngebiet und f holomorph, bis auf
méglicherweise einen Punkt, dann gilt (4.5). Insbesondere ist f integrabel.

Beispiel 4.38.

(a) Ist n € Z \ {—1}, so besitzt die Funktion C — C, z — 2" die Stammfunktion

z = f::ll auf C. Mit Satz 4.33 folgt nun f7 2"dz = 0 fiir jeden geschlossenen

Integrationsweg ~ in C. Insbesondere ist also /. 9B.(0) 2" dz = 0 fiir r > 0, wie bereits
in Beispiel 4.27(b) berechnet.

(b) Die Funktion C — C, z — L ist nicht integrabel in C, da fc‘)Br(O) 2dz =271 # 0 fiir
r > 0 nach Beispiel 4.27(b).

Beweis von Satz und Definition 4.37. (a): ,(i)=-(ii)* folgt aus Satz 4.33.

,(i1)=(1)“ Sei 2y € G beliebig. Zu z € G existiert dann ein Integrationsweg v von z
nach z. Ist ferner n ein weiterer Integrationsweg von z, nach z, so ist v - =1 geschlossen
und daher

(4.6) /Wf—/nf:/%nlf:o

nach Voraussetzung. Wir definieren nun F: G — C durch F(z) = f,y f, wobei v ein
beliebiger Integrationsweg von zg nach z ist. Dann ist F' aufgrund der durch (4.6)
Unabhangigkeit der Wahl des Weges von zy nach z wohldefiniert. Wir zeigen nun, dass
F eine Stammfunktion von f ist. Seien dazu z € G fest und § > 0 mit Bs(z) C G und v
ein Integrationsweg von zy nach z. Fir w € Bs(z) ist dann v - [z, w] ein Integrationsweg
von 2y nach w, also ist

AR CEY BINEY FEY AN BUAYCRSCITRS

und somit
HO T g == | [ =g T s - 010

fir w — z aufgrund der Stetigkeit von f in z. Es folgt F'(z) = f(z) wie behauptet.
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(b): Da jeder Dreiecksweg OA in G geschlossen ist, folgt (4.5) aus der Integrabilitat
von f. Gelte umgekehrt (4.5) und sei F': G — C definiert durch F(z) := f[zmz} f. Dann
folgt ahnlich wie zuvor F’ = f auf G.

(c): Wir présentieren eine Beweisskizze. Fiur einen ausfiithrlichen Beweis, siehe [14,
Kap. III, Satze 1.1 und 1.2]. Alle folgenden Dreieckswege werden als Randwege im
positiven Sinn durchlaufen.

Sei zunéchst f in G holomorph. Wir zerteilen Ag := A in vier Teildreiecke A}, ... Al
indem wir die Seitenmitten verbinden. Da die im Innern von A liegenden neuen Seiten
jeweils als Rander zweier angrenzender Dreiecke in gegenldufigem Sinne durchlaufen

werden, folgt
4
=)0 [ o=l a)
/8A ; oAk ok A

wo wir Ay € {Al, ..., Al} so ausgewihlt haben, dass dort der maximale Absolutwert des
Integrals angenommen wird. Nun verwenden wir A; als Ausgangsdreieck und wiederholen
die Zerteilung. Sukzessive finden wir eine Folge Ag D A1 D Ay D ... mit

IR

(4.8) L(OA,) = 27" L(AA).

< 4max
k

(4.7)

Da A kompakt ist und lim,,_,. diam A, = 0 gilt, folgt (>, A, = {20} fir ein 2y € A.
Die komplexe Differenzierbarkeit von f in z liefert eine stetige Funktion h: G — C mit
h(zo) = 0und f(2) = f(20)+ f'(20)(z — 20) + h(z)(z — zo) fiir alle z € G. In dieser Summe
sind die ersten beiden Terme integrabel. Zusammen mit der Standardabschatzung folgt
fiir alle n € N:

/ f‘ <4" / h(z)(z — z) dz wegen (4.7)

oA 9,
< 4"L(OA,)? Hiaxlh] Standardabschétzung
= rriax\h\ wegen (4.8).

Wegen lim,, o maxa, |h| = 0 folgt [, f = 0.

Nun erlauben wir, dass f in einem z; € G nicht komplex differenzierbar, sondern
lediglich stetig ist. Falls zy ein Eckpunkt von A ist, dann Zerteilen wir A wie in Abb. 4.1.
Es gilt dann nach dem ersten Teil [, f = [,,, [ =0, also [, [ = [, [ Da wir z
und 2{ beliebig nahe an z, wéihlen konnen, folgt aus der Standardabschétzung |, ant =0.

Falls zg auf einer Seite von A liegt, dann zerteilen wir A wie in Abb. 4.2 angedeutet und
wenden das vorige Ergebnis auf die entstandenen Dreiecke an. Und falls 2y im Innern von
A liegt, dann zerteilen wir A wie in Abb. 4.3 angedeutet und wenden den vorangehenden
Fall an. O
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4.3 Der komplexe Logarithmus

Sei U C C eine offene Teilmenge, so dass exp |y injektiv ist. Da die Exponentialfunktion
2mi-periodisch ist, muss notwendigerweise U # C gelten. Dann existiert die Umkehr-
funktion g = exp~! auf V := exp(U). Falls V offen, g stetig und z; € V ist, dann
folgt

(4.9) 9(z) — g(20) _ 9(2) — g(20) 2z 1 _ 1 _ 1

c=z em(g(z) —explg(z))  expl(g(0) | explg() 0

Es folgt ¢’(2) = 1/z in V. Dies liefert die Motivation, Umkehrungen der Exponential-
funktion als Stammfunktionen von 1/z zu erhalten.

Definition 4.39. Ist G C C ein Gebiet, so heifit eine holomorphe Funktion g: G — C
Zweig des Logarithmus (auf G ), wenn exp(g(z)) = z fur alle z € G gilt.

Satz 4.40. Scien G C C und g: G — C eine Funktion.

(a) Ist g ein Zweig des Logarithmus auf G, so ist fir k € Z auch z — g(z) + 2wik ein
Zweig des Logarithmus auf G und jeder Zweig des Logarithmus ist von dieser Form.

(b) g ist genau dann ein Zweig des Logarithmus, wenn g auf G holomorph ist mit
J(z) = % fiir alle z € G und exp(g(a)) = a fir mindestens ein a € G gilt.

(¢) Auf G existiert genau dann ein Zweig des Logarithmus, wenn z % in G integrabel
ist. Insbesondere existiert auf jedem in C enthaltenen Sterngebiet ein Zweig des
Logarithmus (nach Satz und Definition 4.37(c)). Auf C existiert jedoch kein Zweig
des Logarithmus (siehe Beispiel 4.38(b)).

Beweis. Zu (a): Fir z € G und k € Z ist
eg(z)+27rik — eg(z)627rik _ eg(z).

Ist umgekehrt f ein weiterer Zweig des Logarithmus auf G und h := f — g, so ist

exp(h(z)) = % = 2 =1fir 2 € G. Da G ein Gebiet und h stetig ist, folgt

h(z) = 2rik fiir ein festes k € Z und alle z € G, d.h. f = g + 27ik auf G (Ubung!).

!
21

Ay

20 Z1

Abbildung 4.1: Zum Beweis von Satz und Definition 4.37(c)
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Abbildung 4.2: Zum Beweis von Satz und Definition 4.37(c)

Ay Ay

Abbildung 4.3: Zum Beweis von Satz und Definition 4.37(c)

Zu (b): ,=“: Wegen exp og = id auf G ist ¢ injektiv und die Aussage folgt aus (4.9).
= Fur f: G—C, f(z):= exp9() o)t

z

=1
—~

f(2) = exp(g(2)) 9'(2)z — exp(g(2))

22

=0 fur alle z € G,

also ist f konstant auf G nach Korollar 4.34. Ferner ist f(a) = 1 fiir mindestens ein
a € G nach Voraussetzung. Also ist f = 1 auf G und somit exp og = id auf G.

Zu (c): ,="“: Dies folgt aus (b).

,<“1 Seien f eine Stammfunktion von % auf G, a € G ~ {0} beliebig und w € C
mit e = —f5 gewdhlt — dies geht, weil exp: C — C surjektiv ist (Ubung!). Fir
h=f+4+w:G— C gilt dann /'(z) = 1 fiir alle z € G und exp(h(a)) = a. Mit (b) folgt
dann exp oh = id auf G. n

Definition 4.41. Die Funktion Log: C — C, Log(z) := log|z| +i Arg(z) heifit Hauptwert
des Logarithmus (siche Bemerkung 4.12 zur Definition der Argumentfunktion Arg). Die
Einschrankung von Log auf C\ {z € R | x < 0} heifit Hauptzweig des Logarithmus.

Beispiel 4.42. Gesucht sind die Werte z € C mit e* = 1 +i. Mit Satz 4.40(a) und der
Definition des Hauptzweig des Logarithmus folgt z = Log(1 + 1) 4 2wik fiir k£ € Z also ist
die Losungsmenge fiir diese Gleichung gegeben durch

{Log(1+1) + 27ik | k € Z} = {log|1 +i| + i(27k + Arg(1 + 1)) | k € Z}
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1
—{logﬁ+iﬂ(2k+z> |/<:€Z},

denn |1 +1i| = v/2 und Arg(1 +1) = Z.

Definition 4.43. Wir definieren fiir z € C und w € C: 2% := {exp(w(Log(z) + 2rik)) |
k € Z}. Dabei heiBt ¥ °&(*) Hauptwert von 2%, und die Einschrinkung des Hauptwertes
auf C\ {z € R | 2 <0} heiBt Hauptzweig von 2".

Beispiel 4.44. Es gilt i' = {exp(i(Log(i) + 2nik)) | k € Z} = {exp(i(log(1) +iZ) — 27k) |
keZ}={e 272" | k € Z} und der Hauptwert von i ist e 2.

4.4 Der Cauchysche Integralsatz

Satz 4.45 (Integralformeln von Cauchy). Seien U C C offen, B,(20) C U und f: U — C
holomorph.

(a) Fir jedes z € B = B,(z) gilt:
(4.10) fz) = = / 1) 4

27 Jop ¢ — 2

(b) f ist beliebig oft komplex differenzierbar und es gilt fir alle z € B und n € Ny:

(4.11) fM(z) = l!/a Adg.

© 27 Jup (C — 2)nt!

Beweis. (a): Sei z € B fest gewéhlt. Wir betrachten in U die Funktion

Q) - f(z

Q=16 .
(—z

f'(2) (=2

Dann ist g in U stetig (da f in U komplex differenzierbar ist) und holomorph in U \ {z}.
Aus Satz und Definition 4.37, angewendet in B,(z) mit B,(zy) C B,(2) C U, folgt

B O (O Rr (G P B (9 R b
0_/339_ OB ¢—=z a6 = aBC—ZdC f(Z)/a;BC—ZdC

9(¢) =

Es reicht also,

(4.12) /8 L 4¢ = oni

BC—2

zu zeigen. Dazu definieren wir fir z € B

1
h(z) :—/aBg_zd(.
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GemdaB den Satzen 2.16 und 4.18 ist A in B holomorph und es gilt

, _ 1
) = /aB (A

Da der Integrand im letzten Integral eine Stammfunktion besitzt, liefert Satz und
Definition 4.37(a) A’ = 0 in B. Wegen Korollar 4.34 ist h = h(z), und (4.12) folgt nun
aus Beispiel 4.27(b).

(b): Wie oben diirfen wir in (4.10) unter dem Integral beliebig oft komplex differenzieren
und erhalten die Formel (4.11). O

Beispiel 4.46. Manche komplexe Wegintegrale konnen mit der Formel von Cauchy
direkt berechnet werden. Als Beispiel betrachten wir fiir » > 0, r # 1:

/ cos(mz) & :/ cos(mz) & _/ cos(mz) dy — 27r% fl:ll” re(0,1)
oB,(0) 2(1 +2) oB.(0)  * oB,0) 1+ 2 4ri fir r > 1.

Dies folgt, da nach Satz 4.45(a) das erste Integral immer den Wert 2micos(7 - 0) = 2mi
hat, und das zweite den Wert 0 fiir r < 1 da der Integrand in B;(0) holomorph ist, und
den Wert 2micos(m - (—1)) = —2i fur r > 1.

Satz 4.47 (Satz von Morera). Sei G C C offen und f: G — C stetig. Dann sind
aquivalent:

(i) f ist holomorph.

(ii) f ist lokal integrabel, d.h. jeder Punkt z € G besitzt eine offene Umgebung U C G,
sodass f|y integrabel ist.

Beweis. (i) = (ii)“: Sei z € G und § > 0 mit Bs(z) C G. Da U := Bs(z) ein Sterngebiet
ist, ist f|y integrabel nach Satz und Definition 4.37(c).

,(il) = (1)“: Sei z € G beliebig und U wie in (ii) gefordert, d.h. es existiert eine
Stammfunktion F': U — C von f|y. Nach Satz 4.45(b) ist F' insbesondere zweimal
komplex differenzierbar in U, also ist f komplex differenzierbar in U. Da z € G beliebig
war, ist f holomorph. O

Korollar 4.48. Seien U C C offen, zg € U und f: U — C stetig. Ferner sei f in
U ~ {20} holomorph. Dann ist f sogar in U holomorph.

Beweis. Dies folgt direkt aus Satz und Definition 4.37(c) und Satz 4.47. [
Korollar 4.48 kann durch mehrmalige Anwendung wie folgt verscharft werden:

Satz 4.49 (Hebbarkeitssatz von Riemann). Seien zg ein Punkt in der offenen Teilmenge
UCCund f: U~{z0} — C holomorph. Falls f in B,(z9)~{z0} fir einr > 0 beschrinkt
ist, dann existiert eine holomorphe Fortsetzung von f auf ganz U.
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Beweis. Die Funktion

F@y:{y—wwﬂ@> z e U {2},

Z = 20,

ist in U ~\ {20} holomorph. Auerdem ist F in z stetig, da f nahe bei zg beschrankt ist.
Nach Korollar 4.48 ist F' in zg komplex differenzierbar. Die Funktion

F(z)

h(z) =< %~ %0

F'(z), 2= zo,

, z€U~Aqz},

ist also auch holomorph in U N\ {2y} und stetig in U. Wiederum liefert Korollar 4.48,
dass h in U holomorph ist. Wegen h = f in U \ {20} ist h die gesuchte holomorphe
Fortsetzung von f auf U. m

Satz 4.50. Seien U C C offen und f: U — C holomorph. Dann ist f analytisch. Ist

o0

(4.13) f(z) = Z%(Z — 2)"

k=0

fur ein zg € U die Entwicklung von f in eine Potenzreihe mit Entwicklungspunkt zy,
dann konvergiert diese mindestens in der grofiten offenen Kreisscheibe Br(zo) C U. Die
Koeffizienten ai sind eindeutig bestimmt durch die Formel

1 f(©)
(4'14) "= % 9B:(20) W ac

fir beliebiges r € (0, R).

Beweis. Sei zy € U fest gewahlt. Seien R := dist(zq, 0U), r € (0, R) fest gewéhlt und &
der positiv orientierte Randweg von B,.(zy). Fiir z € B,(2g) liefert die Integralformel von
Cauchy

(4.15) f(z) = %/%dg.

Wir entwickeln 1/(¢ — z), den Integralkern von Cauchy, fir z € B,.(z) und ¢ € 0B, (2)
in eine Reihe aus Potenzen von (z — 2¢)/(¢ — 20):

11 1 = (z—2)
(—2z 1-2&=2 —zo_z::(Q—ZO)k“'

¢—20 k=0
Wegen
Z—z Z—z
of _ ==l g
¢ — 20 r
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konvergiert diese fiir festes z gleichméfig in ¢. Mit (4.15) und Satz 4.30(b) folgt

(4.16) f(z):i(%m/n(c_f(%dg) (2 — 20)" Zak z— 2p)",

k=0

wobei die Koeffizienten durch (4.14) gegeben sind. Andererseits sind die a; durch
Satz 4.22(b) unabhingig von r eindeutig festgelegt. Da r € (0, R) beliebig war, folgt,
dass die Reihe (4.16) in Bgr(zo) lokal absolut gleichméfig konvergiert. O

Bemerkung und Beispiel 4.51. Die Taylorreihe einer rationalen Funktion berechnet
man fiir einen Entwicklungspunkt 2z, € C am einfachsten, indem man nach Partialbruch-
zerlegung Terme der Form 1/(z — a) als geometrische Reihe schreibt:

1 1 > (z — zo
(417) == "1 z—za Z

Z—a a—z 1 a—zo“l
a—zo /=0

Die Reihe fiir Terme der Form 1/(z — a)* ergibt sich dann durch Ableiten von (4.17).
Ein Beispiel fiir eine Entwicklung um den Nullpunkt:

-1 1 1 1

Co1)P=2 2-1 (z-1p =z-2

[e.9]

:—gzk+;kzk_l+§ﬁzkzz <k:+ 2k+1)zk.

Satz 4.52 (Cauchy-Ungleichung). Seien U C (C offen, f: U — C holomorph, a € U und
0 < r <dist(a,C\ U). Dann ist |f"(a)| < 2 maxap, @) f| fir alle n € N.

Beweis. Dies folgt aus (4.11) und der Standardabschétzung. ]
Satz 4.53 (Satz von Liouville). Jede beschrinkte ganze Funktion ist konstant auf C.

Beweis. Sei L := sup,c¢|f(z)|. Die Cauchy-Ungleichung (Satz 4.52) liefert |f/(a)| < £
fir alle a« € C und r > 0. Es folgt also f’(a) = 0 fiir alle a € C. Also ist f konstant nach
Korollar 4.34. ]

Satz 4.54 (Fundamentalsatz der Algebra). Jedes Polynom f: C — C vom Grad n > 1
hat eine Nullstelle in C.

Beweis. Sei f(z) =Y p_saxz” mit a, € C, k=0,...,n, a, # 0. Dann gilt
f(z)

Zn

lim

|z| =00 |z]—o0

’ = |a,| > 0, also hm |f(2)] = 0.

Angenommen, f habe keine Nullstelle. Dann ist ¢ = 1/f eine ganze Funktion mit
lim|.| 00 |g(2)] = 0. Also ist g auch beschrankt und somit konstant nach Satz 4.53. Dies
erzwingt g = 0, was ein Widerspruch ist. O]

Bemerkung 4.55. Aus Satz 4.54 kann per Induktion gezeigt werden, dass jedes komplexe
Polynom in Linearfaktoren zerlegt werden kann. Diese Eigenschaft haben wir in fritheren
Ergebnissen bereits mehrmals verwendet.
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4.5 Windungszahlen

Definition und Satz 4.56. Seien w € C und 7v: [a,b] — C ~ {w} ein geschlossener
Integrationsweg. Dann definieren wir die Windungszahl (Umlaufzahl) ind(y, w) von v um

w durch ) .
ind(y,w) := —/ dz.

27 yE W

Es gilt dann ind(~, w) € Z.

Beweis. Wir zeigen den Fall w =0, a = 0 und b = 1. Der allgemeine Fall folgt dann aus
ind(vy,w) = ind(y — w,0) und einer Umparametrisierung. Sei g: [0, 1] — C durch

1 [ty
)= — [ L
9() QWiA’Y

definiert. Fiir h = e 2"~ folgt h = e 29 (—2migy + 4) = 0, nach Definition von
g. Demnach ist h = ¢ fir ein ¢ € C und es gilt ¢ # 0, denn ~(0) # 0. Es folgt
e?™9() = y(1) /e = v(0) /c = *™90) = & = 1. Die Eigenschaften der Exponentialfunktion
liefern md(’y,()) g(1) € Z (Ubung!). O

Bemerkung 4.57. Wir zeigen, dass die Windungszahl geometrisch die Anzahl der
Windungen eines geschlossenen Integrationsweges v um w zahlt, wobei Windungen gegen
den Uhrzeigersinn positiv und im Uhrzeigersinn negativ gezahlt werden. Wir betrachten
den Fall w = 0 und ~: [0,1] — C: Es gibt eine Zerlegung 0 =ty < t; < --- < t, = 1
von [0, 1], so dass fiir jedes k die Spur von ~;, := 7|[tk_1,tk] in einer offenen Kreisscheibe
Dy, C C liegt. GeméB Satz 4.40(c) existiert auf jedem Dy, ein Zweig des Logarithmus. Wir
setzen zp, = y(tx). Induktiv wahlen wir wie folgt Zweige des Logarithmus g; auf Dj: Der
Zweig gy sei willkiirlich gewahlt. Wenn g festgelegt ist, dann wird der Zweig gxy1 durch
die Bedingung gx(zx) = gr+1(2x) eindeutig festgelegt. Mit der Definition ¢y = Im(gg o %)
folgt v (t) = |y (t))]e¥*® fiir ¢ € [ty_1,tx], d.h. oy ist ein Argument von 7. Da gj in Dy,
eine Stammfunktion von 1/z ist, folgt

1 .
/ . dz = gi(2k) — gr(zk-1) = log|zk| — log|ze—1] + i(pr(tr) — @r(te-1)),
Tk

d.h. der Imaginérteil dieses Integrals misst die Winkelanderung beziiglich 0, welche v im
Abschnitt [tg_1, %] erfahrt. Summation ergibt

ind(v,0) = %/ =53 Z/ —dz
(1) = ¢1(0)

1 .
= 2—m(10g’ZO| - 108;’»20| + I(SDn(l) - 901(0))) = T € Z,

also die Anzahl der Windungen von v um 0.
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5 Laurentreihen und der
Residuenkalkiil

Definition und Bemerkung 5.1. Seien U C C offen, zp € U und f: U\ {2} — C
holomorph. In diesem Fall nennt man zy eine isolierte Singularitit von f.

(i) Ist f in einer Umgebung von 2, beschrankt, so kénnen wir f nach Satz 4.49
holomorph in U fortsetzen. In diesem Fall nennt man zy eine hebbare Singularitdt
von f.

(ii) Existiert m € N derart, dass a_,, := lim,_,.,(z — 29)" f(2) existiert und von Null
verschieden ist, so nennen wir zg einen Pol m-ter Ordnung von f. In diesem Fall gilt
lim,,.,|f(2)| = co. Die Funktion z + (2 — z9)™ f(2) hat eine hebbare Singularitat
in zp und wird durch den Wert a_,, in zg zu einer holomorphen Funktion g: U — C
fortgesetzt. Fiir r € (0, dist(zo, C\ U)) lasst sich g also in B,.(zp) in eine Taylorreihe
folgender Form entwickeln:

N S _ ! 9(8)
9(z) = ;bn(z B Lt = N s T

Fir z € B,(z0) \ {70} ergibt sich also

o0

f(Z) = Z an(z - ZO)n mit Ap = anrm = L Lﬁ)w d£

ne—m 2 dBr(z0) (€ — 20)

(iii) Trifft weder (i) noch (ii) zu, so nennt man z, eine wesentliche Singularitit von f.
Dies ist zum Beispiel fiir die Funktion f: C — C, f(z) = e* und z = 0 der Fall.
Diese Funktion besitzt die Reihenentwicklung

n=—oo

Bemerkung 5.2. Ist U C C eine offene Menge und f: U — C eine Funktion, so nennt
man f auch meromorph, wenn es eine in U diskrete Menge M gibt, so dass f|i\m
holomorph ist und so, dass alle Punkte in M Pole von f sind. M diskret in U bedeutet
hier, dass M keinen Haufungspunkt in U besitzt.
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Definition 5.3. Seien U C C offen und ), f, eine Reihe von Funktionen f,,: U — C,
wobei hier n entweder N oder Z durchlauft. Wir nennen die Funktionenreihe ) f,
dann kompakt konvergent, wenn sie in jeder kompakten Teilmenge von U gleichméfig
konvergiert.

Satz 5.4. Seien U C C, zy € U, r = dist(20, C\ U) und f: U\ {20} — C holomorph.

Dann ldsst sich f um zy in eine Laurentreihe entwickeln, d.h. es gilt

o0

(5.1) ()= an(z—z)" fiir z € Bu(20) \ {20},

n=—oo

wobei die Koeffizienten a,, unabhdngig von s € (0,1) gegeben sind durch

1 S,

ay, = ) d¢, n € 7.

2 Jop,(z) (€ — 20)

Die Reihe (5.1) ist ferner kompakt konvergent in B,(zy) \ {z0}. Genauer: Die Funktionen

o0

f+: Br(20) — C, fe(z) = an(z — z)"

n=0

-1

foiC\{2} > C, f(z)= > an(z—2)"

sind holomorph und die Reihenentwicklungen sind kompakt konvergent im jeweiligen
Definitionsbereich. Ferner gilt f(z) = f1(2) + f-(2) fir z € B,(2) \ {20}-

Beweis. Siehe [14, Kap. 6, Satz 1.2] O
Definition 5.5. In der Situation von Satz 5.4 nennt man die Funktion f, den Nebenteil

und die Funktion f_ den Hauptteil der Laurentreihe von f in zy. Ferner nennt man a_;
das Residuum von f und schreibt:

res,, [ 1= a_.

Bemerkung 5.6. (a) Seien m € N und zj ein m-facher Pol einer holomorphen Funk-
tion f: U\ {20} — C. Sei ferner g die holomorphe Fortsetzung der Funktion
2z (2= 29)" f(z) auf U. Dann gilt

(m—1)
g (Zo)
res;, f = W

Im Fall m =1 gilt speziell:
res,, f = lim (2 — 29) f(2).

Z—20
Ist namlich > 7 b,(z — 29)" die Taylorentwicklung von g um z,, dann folgt
f(z)=>0"  byim(z — 2)" fir die Laurententwicklung von f um z, und daher

Satz 4.22 gV (%)

res,, f = bm—1 1)
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(b) Seien zy € C, U eine offene Umgebung von 2z, und g,h: U — C holomorphe
Funktionen mit g(zo) # 0, h(20) = 0 und A'(20) # 0. Dann hat f = £: U\ {2} — C

in zy einen einfachen Pol mit res,, f = ((ZO)) Es gilt namlich

B (= — 20/ (2) = Jim g(e) s = 20

Demnach hat f einen einfachen Pol in zy und die Behauptung folgt aus (a).

Satz 5.7 (Residuensatz). Seien G C C ein Sterngebiet, v ein Integrationsweg in G,
M C G endlich mit |y|N M =@ und f: G\ M — C holomorph. Dann gilt

/f = 2mi Z ind(y, w) res, f.

weM

Beweis. Fir w € M sei hy,: C\ {w} — C der Hauptteil der Laurentreihenentwicklung
von f in w. Dann lasst sich die Funktion g := f — > ., hw holomorph auf G fortsetzen.
Nach Satz und Definition 4.37 gilt also 0 = f7 g und damit ist

(5:2) / =3 /

Fiir festes w € M hat man dabei eine nach Satz 5.4 auf |y| gleichméBig konvergente
Reihenentwicklung hy,(2) = S0 a,(z — w)™, also gilt

n=—0oo

1
/ Z an/ z— = a_l/ dz = 27iind(y, w) res, f,
L Z =W

n=—oo

da fir n < —1 die Funktion z — (2 — w)™ auf C\ {w} eine Stammfunktion besitzt.
Einsetzen in (5.2) liefert also

/f = 2mi Z ind (7, w) res, f. O

weM

Bemerkung 5.8. Der Residuensatz kann unter wesentlich allgemeineren Bedingungen
bewiesen werden. So muss G kein Sterngebiet sein, die Anzahl der nicht hebbaren
Singularitdten von f kann unendlich sein, und der Integrationsweg v kann unter gewissen
Bedingungen durch einen Zyklus ersetzt werden, eine endliche Anzahl geschlossener
Integrationswege; siehe z.B. [14, Kap. VI, Satz 4.1].

Satz 5.9. Sei G ein Sterngebiet, welches eine Umgebung des Abschlusses der oberen
Halbebene H == {z € C | Imz > 0} darstellt. Sei ferner f holomorph in G ~ M, wo M
die endliche Menge von Polen und wesentlichen Singularititen von f ist. AufSerdem gelte
MNR =92 und

(5.3) lim zf(z) =0.

|z| =00
2€H
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Dann folgt

r

(5.4) lim [ f=2m Y res,f.

r—oo |
weMNH

Beweis. Wir betrachten ~,: [0, 7] — C mit 7,(t) := re. Fir hinreichend grofes r gilt
M N H C B,(0). Ferner gilt offensichtlich ind([—r,7] - v,,w) = 1 fiir w € M N H und
ind([—r, 7] - v, w) =0 fur w € M ~ H. Es folgt aus dem Residuensatz, Satz 5.7:

(5.5) /[ ]f—l—/ f=2mi Z res,, f.
—r,r v

/
Ir

fir » — oo, wegen (5.3). Demnach folgt (5.4) aus » — oo in (5.5). O

Ferner gilt

< max| F()IL () = wmax|zf ()] 0

|z|=r

Bemerkung 5.10. Der Grenzwert auf der linken Seite in (5.4) heifit Cauchyscher
Hauptwert im Unendlichen. Insbesondere trifft Satz 5.9 zu, falls f eine rationale Funktion
ist, deren Nenner einen um zwei grofleren Grad als ihr Zahler hat. In diesem Fall ist f
auf R wegen Aufgabe 21(b) und dem Majorantenkriterium sogar Lebesgue-Integrierbar,
und in (5.4) steht links das Lebesgue-Integral iiber R (kann auch als das uneigentliche
Riemann-Integral aufgefasst werden).

Satz 5.11. Sei f wie in Satz 5.9 gegeben, wobei wir aber statt (5.3) lediglich die schwdi-
chere Voraussetzung
(5.6) lim f(z)=0

|z]—o0
2€H

machen. Dann folgt

(5.7) ) fle)ede =2mi Y res,(f(¢)e).

- weMNH
Die Existenz des uneigentlichen Riemann-Integrals ist dabei Teil der Aussage.

Beweis. Fir hinreichend grofies ro gilt M N H C B,,(0). Sei vy ein injektiver Integrati-
onsweg von 0 nach irg, so dass |y| C (BU{0,irg}) ~ M gilt und so, dass B \ || die
disjunkte Vereinigung zweier Gebiete GG; und G ist. Hier sollen G rechts und Gy links
von 7 liegen. Fiir r > ry definieren wir Integrationswege

Yra(t) = ret, te[0,m/2]
Tra(t) = re, telr/2,7
Es folgt, dass ', 1 == [0, r]-,.1 - [ir, ir0] 7o L und [yo = [—7,0]-7-[iro,ir] - 72 geschlossene

Integrationswege in G sind. Ferner gilt offensichtlich ind(I', j, w) = ;5 fir w € M N Gy,
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J.k=1,2 und ind(', ;, w) = 0 fiir w € M ~ H. Aus dem Residuensatz, Satz 5.7, folgt
also

(5.8) /F e ( /[O o /7 - /[ o /7 ) F(2)e dz

= 2mi Z res, (f(¢)e)

zeMNGq

und
(5.9) /FT,2 f(z)e*dz = (/[—r,o] + /70 + /[im,ir] + /%72)f(z)eiz dz

= 2mi Z res, (f(¢)e).

zeMNGa
Aufgabe 35(b) von Blatt 9 liefert

(5.10) / f(2)e* dz

/2 . oo
/ f(re™) exp(ire)ire” dt'
0

w/2 )
< max |f(z)|7"/ lexp(ire™)| dt < max |f(z)|g —0
20 0 20

fir r — oo, wegen (5.6). Die Funktion ¢ — f(it) ist in [rg, 00) beschrankt, nach Definition
von ro und wegen (5.6). Daher ist ¢ — f(it)e™" Lebesgue-integrierbar in [rg, 00) und es

existiert
o0

C = lim f(z)e*dz =i f(it)e™ dt.
r—+oo [irg,ir] 0

Aus diesen Tatsachen folgt fiir 1 — oo in (5.8) die Existenz von

(5.11) /000 f(z)e™ dz = lim f(2)e* dz

7—00 [077,]
= 2mi Z res, (f(C)e') + C + / f(2)e* dz.
zeMNG1 Y0
Analog zeigt man

0
(5.12) / f(z)e™ dz = lim f(2)e* dz

r—00 [—r,0]
= 2mi Z res, (f(¢)e*) — C — / f(2)e* dz.
zEMNG2 Yo
Aus der Summe von (5.11) und (5.12) folgt dann die Behauptung. O

Bemerkung 5.12. Es existieren viele Anwendungen dieser und dhnlicher Satze in der
reellen Analysis. Insbesondere kann man auch einfache Pole auf der reellen Achse zulassen
oder Integrale iiber [0, c0) betrachten. Einige Beispiele werden als Ubung gestellt.
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6 Die Fouriertransformation

In diesem Kapitel bezeichne LP(B) := L?(B,C) fiir eine messbare Teilmenge B C RY
und p € [1,00) den komplexen Vektorraum der Funktionen f: B — C, so dass Re f und
Im f in LP(B,RY) liegen, sieche Bemerkung 2.14. Wir setzen wieder

I = ( [ 1) "

Fiir eine L2-Funktion f: [~ 7] — C definiert man die Fourierreihenentwicklung von
f durch

ao
5 + kz:; ar cos(kz) + by sin(kz)),
mit
1 K
= —/ f(z)cos(kx)dz, ke Ny
T
(6.1) i

= %/:r f(x)sin(kz)dz, ke N.

In Mathe 2 wurde gezeigt, dass die Fourierreihe in L?([—, 7]) gegen f konvergiert. Unter
gewissen zuséatzlichen Bedingungen an f konvergiert die Reihe sogar punktweise oder
gleichméBig. Die Fourierreihe kann auch mit Potenzen von e'* geschrieben werden:

n . 1 - .
Z cpett® mit Cp 1= —/ f(z)e ™ dz.
2 ) .

k=—n

Die Abbildung Z — C, k + ¢, heiit dann Fouriertransformierte von f. Wir wollen hier
eine analoge Transformation von komplexwertigen Funktionen betrachten, die auf R (statt
auf [—m, 7]) bzw. auf RY definiert sind. Es zeigt sich, dass die Fouriertransformierten
dann auch komplexwertige Funktionen auf R (statt auf Z) bzw. R sind.

Definition 6.1. Wir setzen im Folgenden D := L'(R") N L*(RY) und betrachten das
komplexe Skalarprodukt

(9) = [ F@go)ds fir g€ D.
R
welches auf dem Raum L?(RY) definiert ist und ihn mit der induzierten Norm ||-||> zu

einem Hilbertraum macht. Allerdings ist der Unterraum D beziigl. dieser Norm nicht
vollstandig.
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Definition 6.2. Fiir f € D definieren wir die Fouriertransformierte F(f): RY — C von
f durch

F(f)y) = (2%)_% (z)e @¥) dg  firy e RY, f € D.

RN

Der lineare Operator F heifit Fouriertransformation. Oft wird auch annstelle von F(f)
geschrieben.

Bemerkung 6.3. Sei f € D. Wegen

f(z)e @Y dg

RN

F(N ) =

§/ |f(x)|dz = || f| fiir alle y € RY
RN

gilt supp~ | F(f)| < co. Insbesondere ist F(f) wohldefiniert. AuBerdem ist ist F(f) nach
Satz 2.15 stetig.

Bemerkung 6.4. Fir N =1, f € D, ist die Fouriertransformierte (f): R — C von f

definiert durch .
FDw) = 7= [ e e

Erfiillen die komplexe Polynome P und () die Bedingung grad ) — grad P > 2 und hat
Q) keine Nullstelle in R, so folgt aus Satz 5.9 fiir den speziellen Fall f := g e D:

(6.2) F(f)y) = V2ri ) res, f,

weM

Hier setzen wir f,(z) := e %% f(2), so dass f,|r € L'(R) gilt, und verwenden M := {z €
C|Q(z) =0, Imz > 0}.

Satz 6.5. Sei f € D.
(a) Fiir alle z,y € RY gilt F(f(- +2))(y) = @2 F(f)(y).
(b) Fiir alle a € R\ {0} und y € RN gilt F(f(a-))(y) = |a| "N F(f) (£).

(¢) Ist zusdtzlich f € CYRY) sowie v f,...,0nf € D, dannist F(0;f)(y) = iy; F(f)(y)
firjg=1,...,N.

Beweis. (a) und (b) folgen direkt aus dem Transformationssatz, Satz 2.18.
(c): Sei zunéchst f € C>®(RY,C). Mit Hilfe der partiellen Integration, Lemma 3.32(b),
folgt

FON) = @)% | of@)e e da

=ipem) ¥ [ f@e 0 de = g F ()0
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Ist f € DNCYRY,C), dann kann man zeigen, dass eine Folge (f,) C C®(RY,C) mit
fe = fin LYRY) und 9, f, — 9, f in LY(RY) fir j = 1,2,..., N existiert. Es folgt

FONy)=@n)7% [ f(x)e ™ dr=(2r)"% lim [ 0 fu(x)e ¥ da

=iy;(2m) "% lim | fu(2)e @ do = iy;(2m) 7% (@) i) qy

k—o0 RN

= iy; F(f)(v) u

Bemerkung 6.6. Sei f € C*(RY) so, dass alle partiellen Ableitungen bis zur Ordnung
k in D liegen. Dann ldsst sich aus Satz 6.5(c) induktiv fiir alle @ € N mit |a| < k
folgern:

F(0°f) (y) = (iy)* F(f)(y) fir alle y € RY.
Speziell folgt fiir k£ = 2 hieraus:
F(=AN(y) = lybF ().

Beispiel 6.7. Wir berechnen die Fouriertransformierte der Funktion f: RV — R,
f(x) = e 1*B/2 Zunachst gilt fir N = 1 und y € R wegen ‘exp (—M)) = exp (y — )
mit Satz 2.16:

i o (25 0= [en (557 v
:i/R(_(Hiy)exp< )Y o [ L g ()

~exp (_@)‘ o,

d.h. dieses Integral ist unabhangig von y. Mit Beispiel 2.21 erhalten wir

Lo () ar o [ () arm v

Dies liefert

72 —j
e~ % /Ze &y qr

N2
_ e—y2/2L exp (_(z—i_—ly)) dr = e V°/2.
V21 Jr 2

Im allgemeinen Fall erhalten wir mit dem Satz von Fubini aus (6.3) fiir y € RY:

©3) F0 == |

N
1 2 . 1 2 .
F - - —|z|3/2 ,—i{z,y) dr = —/ —$j/2 —iz5y5 4
(N = Gy [ 8 e = s [ [[eiter s
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N 1 / N

o H —22/2 —iz;y; dr: = H -y2/2 _ —lyl3/2

— R e “i’'“e $J = e 7 =€ .
i1V 21 Jr

j=1
Es folgt also F(f)(y) = f(y), d.h. f ist ein Fixpunkt der Fouriertransformation.

Definition 6.8. Es seien f,g: R — C Funktionen. Wir definieren formal fiir z € RY

=/ flz—y)g(y)dy
RN

f * g wird auch als die Faltung von f und g bezeichnet.
Lemma 6.9. Fir f,g € D ist f x g wohldefiniert und es gilt f x g € D.

Beweis. Sind f,g € D, so ist (z,y) — f(x — y)g(y) messbar (Ubung!) und

/ @ —y)g(y)| dedy = / 1) dy = [ Fllzllgle < oo
RN JRN RN

Nach dem Satz von Tonelli liegt also (z,y) — f(z — y)g(y) in LY(RY x RY). Der Satz
von Fubini liefert nun, dass (f * ¢)(z) fiir fast alle z € RY wohldefiniert ist und dass
f*gin LYRY) liegt, mit || f * gllzr < || fllz2llgllz:- Fiir Funktionen u,v € L*(RY) gilt
die Cauchy-Schwarzsche Ungleichung:

(6.4) [{u, 0] < flullz2[v]] z2-

Es folgt mit u = |f(z —y)|"/? und v = | f(x — y)|*/?|g(y)| als Funktionen in y mit festem

2
/ el = [ [ st =t an] as
RN RN
2
g/ ( |f(x —y)g(y )|dy> dz Standardabsch.
2
- [ ([ =i = ilay) as
< [ Ifll / 5= )l dy (6.4) und Trafosats
RN RN
Wl [ [ 156 = o) dedy Fubini
RN JRN
= I £II7: 119172 Trafosatz
< 0,
also f* g € L*>(RY). Insgesamt folgt f * g € D. O

Wir schreiben ab jetzt meistens f statt F (f).
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Proposition 6.10 (Faltungssatz). Fir f,g € D gilt

—— N~
fxg=(2m)2fg.
Beweis. Sei x € RY. Dann liefert der Satz von Fubini:

—

Feglx) = 2m) ¥ / (f * 9)(y)e ) dy

—enF [ [ =2 asay

—en [ [ r= e s

= (27r)_]2v/ f()g(z)e " @¥ ) dy dz
RN JRN

= (277)’% f(v)e i@v) dv/ g(2)e @2 dz
RN RN

f(x)g(). O

Im Folgenden wollen wir die Fouriertransformation auf ganz L*(RY) ausweiten und
dazu zeigen, dass die L?-Norm unter F erhalten bleibt. Dies kann nicht direkt aus der
Definition gefolgert werden, sondern wird mit einer Approximationsmethode gezeigt.
Dafiir benétigen wir

vz

= (2m)

Definition und Satz 6.11. Fiir x € RY, & > 0 sei p.: RY — R gegeben durch

pola) = (2me?) ¥ exp (—'j—') |

Dies ist der Gaufische Glittungskern: Es gelten p. € C*°, p. > 0, p. € LP(RY) fiir alle
p>1, [on pe =1 und p, ist eine gerade Funktion. Fiir p > 1 und f € LP(R") gilt dann:

(6.5) limp.xf=f in LP(RM).

Ferner gilt

202 o
5i(2) = 2m) ¥ exp (—5 '2‘6' ) md B =pe

Beweis. Fiir den Beweis von (6.5) siche [28, Theorem 2.16]. Die anderen Aussagen folgen
aus Satz 6.5(b). O

Satz 6.12. Fir f € D ist fe L2(RY) und es gilt die Gleichung von Plancherel:

112 = [ £l 2.
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Beweis. Wegen Bemerkung 6.3 ist f eine beschriankte stetige Funktion. Somit ist f
messbar und das Integral

b= 0 [ IFRRA:) 0

ist fiir jedes € > 0 endlich. Wegen f € L*(RY) ist die Funktion (x,y,2) — f(z)f(y)p:(2)
messbar, und der Satz von Tonelli zeigt, dass sie in L'(R3Y) liegt. Mit dem Satz von
Fubini, Beispiel 6.7 und Satz 6.5(b) rechnen wir:

ke = (2m) N2 [ F@) f(y)e v () d(my 2) = | @) f)pely — x) d(z,y)

R3N R2N

= [ T@f@)p-(z —y)d(z,y) = (f,pe = f).
R
Wegen Definition und Satz 6.11 gilt p. x f — f in L*(RY) fiir ¢ — 0. Es folgt aus der
Cauchy-Schwarzschen Ungleichung lim. o k. = lim._0(f, pe * f) = (f,lim._ pc % f) =
| fllz2. Insbesondere bleibt k. beschrénkt fir e — 0. Wir haben andererseits

(6.6) 0<@2n)¥?%p. A1 fir e — 0.

Ngch dem Satz iiber die monotone Konvergenz liefert die Definition von k. also lim,_,q k. =
| f]|z2 und somit die Behauptung. B

Satz 6.12 zeigt, dass F: D — L*(RY) ein stetiger linearer Operator ist. Wegen
C®(RY,C) C D und weil C*(RY,C) in L*(RY) dicht liegt (MaBtheorie!), liegt auch
D in L*(RY) dicht, d.h. jede Funktion in L*(RY) kann beziiglich der L?-Norm beliebig
gut durch eine Funktion in D approximiert werden. Zusammen mit der Gleichung von
Plancherel erméglicht uns dies jetzt, F auf L*(RY) fortzusetzen.

Satz 6.13. Es gibt einen eindeutig bestimmten stetigen linearen Operator L*(RY) —
L*(RY), der eine Fortsetzung von F: D — L*(RY) ist. Wir bezeichnen ihn weiter mit

F und schreiben f = F(f).
(a) F ist eine Isometrie, d.h. HfAHLz = ||fllz2 fiir alle f € L*(RY).
(b) Es gilt die Gleichung von Parseval: (f,§) = (f,g) fir alle f,g € L*(RM).

Beweis. Seien f € L*(RY) und (f;) C D eine Folge mit f; — f in L*(RY) fiir j — oo.
Mit Satz 6.12 ergibt sich ||f; — fullzz = |If; — fellzz — 0 fiir 5,k — oo, weil (f;)
als konvergente Folge eine Cauchyfolge in L*(RY) ist. Demnach ist also auch ]?J eine
Cauchyfolge in L?(R”), welche gegen eine Funktion g € L*(RY) konvergiert. Jede andere
Folge in D, welche in L*(R"Y) gegen f konvergiert, lisst sich mit (f;) zusammenlegen und
ergibt wieder eine konvergente Folge. Das obige Argument lésst sich auch auf diese Folge
anwenden und liefert eine konvergente Folge von Fouriertransformierten, deren Grenzwert
unverdndert ¢ ist. Demnach héngt g nicht von der approximierenden Folge (f;) ab und
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wir setzen F(f) = f := ¢. Bs ist eine leichte Ubung, die Linearitdt von F und den
Unterpunkt (a) zu zeigen. Die Stetigkeit von F folgt direkt aus diesen Tatsachen. Der
Unterpunkt (b) folgt aus (a) und der Polarisierungsgleichung, welche das Skalarprodukt
durch die induzierte Norm ausdriickt, siche Mathe 2, Parallelogrammgleichung. O]

Bemerkung 6.14. Um die Fouriertransformierte einer Funktion f € L*(RY) \ D zu
berechnen, kénnen wir f in L%(RY) beliebig durch Funktionen aus D approximieren.
Zum Beispiel gilt fir R > 0, dass fr = lpg)f in D liegt und dass fr — f (Ubung!)
und somit auch fr — f in L*(RY) gilt fiir R — oo.

Satz 6.15 (Inverse der Fouriertransformation in L?(R")). Die Fouriertransformation
F: LA(RY) — LX(RY) ist bijektiv. Fiir g € L*(RY) setzen wir g¥(x) := g(—x). Dann gilt
(6.7) F g =g’

fiir alle g € L*(RY). Demnach ist F ein unitirer Operator.

Beweis. Zunachst ist F als Isometrie automatisch injektiv. Sei f € LQ(RN ), und sei

(f;) €D mit f; — fin L*(RY) fiir j — oo gegeben. Dann gilt f] — f nach Satz 6.13.
Es folgt fiir z € RY

[ AR as = ea) ™ [ A e .

R2N

— [ p-atwdr= [ pte- s d
RN RN
und daher

68) CrEh) = [ ARSI A = [ e =) ) dy = (oo S)o)

nach dem Grenziibergang j — oo. Ferner folgt aus (6.6) und dem Satz tiber die dominierte
Konvergenz (27)V/2p.f — f in L*(RY), nach Satz 6.13 also auch

— ~

(6.9) Lm(2n)N2(5.f) =F  in L*RM).

e—0

Zusammen mit Definition und Satz 6.11 ergeben (6.8) und (6.9)

~

(6.10) f(=2)=fx) fi.

und somit (f)¥ = f im Sinne von L%(RY). Damit haben wir (6.7) fiir alle g € Bild(F)
gezeigt. Fiir beliebiges g € L*(RY) sei h € L*(RY) durch h(z) := g(—z) definiert. Dann
liefert (6.10)

hiz)=h(—z)=g(z) fi.,
also g = h = F(h) im Sinne von L*(RY). Dies zeigt, dass F surjektiv ist. O
Bemerkung 6.16. Fir g € D gilt
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6.1

Distributionen und Fundamentallosungen

In diesem Abschnitt werden wir am Beispiel der Laplacegleichung grob die Idee darstellen,
wie mit Hilfe von Distributionentheorie und Fourieranalysis partielle Differentialgleichun-
gen gelost werden konnen.

Wir verwenden die Notation 7 := C®(RY, C). Eine Distribution ist ein stetiger linearer
Operator 7 — C. Den Vektorraum der Distributionen bezeichnen wir mit 7*.

Eine Schwierigkeit, auf die wir hier nicht eingehen werden, liegt darin, eine geeignete
Vektorraumtoplogie fiir 7 zu wéahlen, um hier von Stetigkeit sprechen zu kénnen (man
wéhlt keine von einer Norm erzeugte Topologie!).

Beispiel 6.17. (a) Sei f: R — C so, dass 1xf € L'(RY) fiir alle kompakten Mengen

K C R¥ gilt. Man nennt f dann lokal integrierbar. Wir definieren
)= | fe VeeT.
RN

Dann gilt 75 € T*.

Fiir z € RY definieren wir

0z(p) = ().
Dann gilt §, € T*. Um diese Distribution &hnlich wie in (a) als Integral schreiben
zu konnen, definiert man das Mafl

1, reM,
(M) = {0 r¢ M

auf MY . Man nennt § := §, das Dirac-Mafp. Mit der Definition des Integrals einer
Funktion beziiglich eines Mafles aus der Mafitheorie folgt dann

(6.11) /gpd&m = p(x).

Fir ¢ € T und z € RY gilt p(x) = lim._,o(p. * ©)(x). Dies motiviert die in der
Physik iibliche rein formale Schreibweise

e = [ o= [ ewima

= [ et =)y =G o))"

Man rechnet also so, als ob § eine Funktion wére und lim._,o p. = d gelten wiirde.
In diesem Zusammenhang spricht man auch von der Delta-Funktion.
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(d) Im Fall N =1 definiert man die ,Stammfunktion® von § durch

’ >
O(z) = / d(z)de = / ds = §((—o0,z]) = 1, falls z >0,
- (—o0,2] 0, fallsz <O0.

© wird auch als Heaviside-Funktion bezeichnet und ist wegen (a) auch eine Distri-
bution.

Fiir ein Element 7 eines gewissen Unterraumes von 7* (den temperierten Distributionen)
definiert man die Fouriertransformation 7 wieder als Distribution durch

() =7(p) firalepeT.

Beispiel 6.18. Es gilt fiir beliebiges ¢ € T

Se) = 5(2) = 20) = (27 [ ply)e 0 dy
= n) 2 [ pl)dy = (2n) ()

und analog

Tilp) =7 (P) = / P(y)e ™ dy = (2m)"2p(0) = (2m)V?6 (),
RN
also
(6.12) §=02m) Mr,  wd A= (2m)V%.

Motiviert durch die Formel fiir partielle Integration in Lemma 3.32(b) definiert man
fiir einen Multiindex « die entsprechende Ableitung einer Distribution 7 wiederum als
Distribution durch

0°7() = (=1)17(0%¢).

Auch fiir Distributionen gilt dann die Beziehung aus Bemerkung 6.6 fiir die Fouriertrans-
formation der Ableitungen.

Beispiel 6.19. Als Anwendung lésen wir formal eine lineare partielle Differentialgleichung
mit Hilfe der Fouriertransformation: Gegeben sei eine Funktion f € 7 und gesucht sei
eine Funktion v € 7 mit

(6.13) —Au=f.

Durch Fouriertransformation geht diese Gleichung iiber in |- |?u = f, d.h. es gilt

V

(B o)

J/

-~

A
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Die letzte Umformung ist durch den Faltungssatz, Proposition 6.10, inspiriert, indem
man dort die inverse Fouriertransformation anwendet. Diese Uberlegungen nimmt man
als Ausgangspunkt und gelangt (mit einigen trickreichen Rechnungen) zu dem Ergebnis

(
_ N=1
2
1
Ale) = § — 5= log(J]) N =2
1 2—N
N > 3.
\N(N—2)LUN_1’I| -

Man nennt A auch Fundamentallésung oder Greenfunktion des Problems (6.13). Unter
geeigneten Bedingungen an f (allgemeiner als f € 7) ist ndmlich uw = A % f die Losung
von (6.13). Formal gilt, wenn man hier f = § einsetzt, u = A x § = A und somit

—AAN =4

Die Fundamentallosung ist also die Losung der Differentialgleichung im Distributionen-
sinne mit dem Dirac-Maf} als Inhomogenitéit. Dieses Verfahren kann man generell fiir
lineare partielle Differentialgleichungen einsetzen, um Fundamentallésungen zu erhalten.
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7 Differentialgleichungen

In diesem Kapitel seien alle Funktionenraume wieder reell. Wir bezeichnen mit |- | = |- |5
die Euklidische Norm in R¥, fiir N € N. In Mathe 2 wurde fiir eine stetige Funktion
f:1I— RN T ein Intervall, das Integral

f I h
f=|
g
f[ I
eingefiihrt und die Standardabschétzung } I f ‘ < [ f] gezeigt.

Definition 7.1. Es sei N € N, U C R x RY und f: U — RY eine stetige Abbil-
dung. Ferner sei (to,ug) € U. Eine differenzierbare Kurve u: I — R heifit Lisung der
Differentialgleichung erster Ordnung

(71) U= f(t, U,),

wenn

(t,u(t) e U und w(t) = f(t,u(t)) furalletel.

Ist ferner ¢ty € I und gilt u(ty) = up, so nennt man die Kurve u auch Léisung des
Anfangswertproblems (AWP)

= f(t,u) in [
U(to) = Ug
Bemerkung 7.2.

(a) Den Ausdruck (7.1) nennt man auch System von (gewdhnlichen) Differential-
gleichungen erster Ordnung. Hierbei bezieht sich die Ordnung auf die hochste
vorkommende Ableitung. FEine Gleichung z.B. der Form i + at + Su = 0 heifit auch
(gewohnliche) Differentialgleichung zweiter Ordnung. Im Fall N = 1 spricht man
von einer skalaren (gewdhnlichen) Differentialgleichung.

(b) Ist U = R x Uy mit Uy € RY und f(t,z) = F(x) mit einer Abbildung F': Uy — RY,
so nennt man die aus (7.1) hervorgehende Differentialgleichung

(7.2) i = F(u)

autonom. Diese Gleichung kann man geometrisch interpretieren: Finde die in Uy
verlaufende Kurve t — u(t), deren Geschwindigkeitsvektoren u(t) jeweils durch die
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Werte F(u(t)) vorgegeben sind. Ein spezielles Beispiel sind die linearen Differential-
gleichungen der Form @ = Au fiir A € RV*Y (siche Mathe II).

Gibt es ug € Uy mit F(ug) = 0, so ist die konstante Abbildung u(t) = wug eine
Lésung von (7.2). Wir nennen u dann auch stationdre Losung, Gleichgewichtslosung
oder auch Fquilibrium. Ist speziell F'(0) = 0, so nennen wir die stationire Losung
u(t) = 0 auch triviale Lisung.

(¢) Zu einem Anfangswertproblem der Form (AWP) ist das folgende Integralproblem
nach dem Hauptsatz der Differential- und Integralrechnung &quivalent: Suche eine
stetige Funktion u: T — RY mit

u(t) = u(to) —l—/t f(s,u(s))ds.

Definition 7.3. Sei U C RxRY und f: U — RY, (t,2) — f(t, ) eine stetige Abbildung.
Wir nennen f lokal Lipschitz stetig in x, falls fur jeden Punkt (¢,x) € U eine Umgebung
V C U und ein L > 0 existiert mit

|f(s,21) — f(s,m2)| < L|xy — 29| fir alle (s,z1), (s,22) € V.
Satz 7.4. Sei U CR x RN und f: U — RY eine stetige Abbildung derart, dass gilt:

(a) Fir alle (t,z) € U ist die Funktion y — f(t,y) iny differenzierbar mit Ableitung
Oy f(t.y) € LIRY).

(b) Die Abbildung 0,f: U — L(RYN), (t,y) — 0,f(t,y) ist stetig.
Dann ist f lokal Lipschitz stetig in x fir alle (t,x) € U.
Beweis. Ubung! n

Bemerkung 7.5. Die Bedingungen (a) und (b) von Satz 7.4 sind insbesondere dann
erfiillt, wenn f € C'(U,R") ist.

7.1 Existenz und Eindeutigkeit

Ein wichtiges technisches Hilfsmittel ist das

Lemma 7.6 (Lemma von Gronwall). Sei J ein Intervall mit to € J, und seien o, f > 0
und u € C(J,[0,00)). Falls gilt

t

(7.3) u(t) <a+p / u(s) ds fir alle t € J,
to

dann folgt

(7.4) u(t) < aeflt—tol fir alle t € J.
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Beweis. Zuniachst seien ty = 0 und ¢ > 0. Wir definieren ¢(t) = Bfot u(s)ds. Die
Ungleichung (7.3) liefert

(7.5) p(t) = Bu(t) < af + Be(t).
Nach Multiplikation dieser Ungleichung mit e~?* erhalten wir

d

(e Me(t) = e p(t) — fe () < e Maf.

Integrieren tber [0, ¢] liefert wegen ¢(0) = 0:
e Mp(t) < a(l—e™),
und daher mit (7.3)
ut) < a+ o) < a(l +e —1) = ae’,

also (7.4). Der Beweis fiir t < 0 geht analog.
Der allgemeine Fall folgt mit der Substitution v(t) = u(ty + t) fir t € J — t, aus dem
Spezialfall. n

Seien nun U C R x RY offen sowie f: U — R" stetig, und lokal Lipschitzstetig im
zweiten Argument. Ferner sei (fo, ug) € U. Wir betrachten die Differentialgleichung

{ at) = f(t,u(t))

Lemma 7.7 (Eindeutigkeit). Seien J; und Jy offene Intervalle mit to € Jy N Jy. Falls
w; jeweils eine Losung von (7.6) in J; ist, i = 1,2, dann folgt uy = us in Jy N Js.

Beweis. Sei I C J; N Jy ein kompaktes Intervall mit ¢y € I. Die Stetigkeit von wu; zeigt,
dass die Vereinigung K der Graphen von u; und uy mit jeweils dem Definitionsbereich I
kompakt ist. Daher existiert M > 0, so dass |f(t,y)— f(t, 2)| < M|y—z| fir (¢,y), (t,2) €
K gilt. Es folgt fir t > tg:

|U1(t)—U2(t)|§/t\f(saul(S))—f(sm(S))ldSSM/tIul(S)—w(S)!ds‘

Das Lemma von Gronwall, Lemma 7.6, liefert nun |u;(t) —uq(t)| = 0 fir alle t € I, ¢t > 1.
Der Fall t <ty wird analog behandelt. Da I C J; N J; beliebig war, gilt u; = uy in ganz
Ji N Js. O

Lemma 7.8 (Lokale Existenz). Es gibt ¢ > 0, so dass (7.6) in [to —¢,to+¢] eine Lisung
besitzt.
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Beweis. Wir wihlen R,e; > 0o, dass f in K = [tg—¢1, to+e1] X Br(uo) C U im zweiten
Argument Lipschitzstetig ist, mit einer Lipschitzkonstante L. Seien M = maxg|f| und
e = min{R/M,1/(2L),e,}. Fir J = [ty — &,ty + €] betrachten wir den Banachraum
F = C(J,RY) mit ||u||r = maxscs|u(t)|. Wir betrachten ug als die konstante Abbildung
t > ug, ein Element von F, und setzen B := Bg(uo). Fiir u € B und ¢ € J gilt dann mit
der Standardabschétzung

<eM <R.

/t:f(s,u(s))ds

Wir koénnen also eine Abbildung A: B — B durch

Au)(t) == up +/t f(s,u(s))ds

definieren. Wir zeigen, dass A einen Fixpunkt, also wegen Bemerkung 7.2(c) eine Losung
von (7.6) besitzt.
Fir uy, us € B gilt

[A(un)(t) = Aug)(1)] =

/ (f(s,ur(s)) = f(s,uz(s))) ds

to

1
< ellluy —ugllp < §||U1 — ||,

also |[A(ur) — Alug)||lr < 3llur — us||p. Demnach ist A eine Kontraktion und der Fix-
punktsatz von Banach liefert die Behauptung. O

Bemerkung 7.9. Fiir die Fortsetzung von Losungen benétigen wir eine Konsequenz des
Mittelwertsatzes: Seien a < b < ¢, g € C([a, b]) differenzierbar in [a,b) und h € C([b, )
differenzierbar in (b, ¢]. Ferner gelte, dass die Grenzwerte a = limy;_,;,— ¢’(¢t) und § =
limy; ;4 B/(t) existieren. Dann sind g und & in b (einseitig) differenzierbar mit ¢'(b) = «
und A/(b) = . Gilt zusatzlich ¢g(b) = h(b) und a = (3, dann ist die zusammengesetzte

Funktion
o [o, tefa,
h(t), te[b,d,

in [a, c| differenzierbar, mit Ableitung o = ( in b. Dieses Resultat kann auch auf die
Koordinaten von Funktionen mit Werten in R angewendet werden.

Das nachste Resultat nennt man den globalen Existenz- und Eindeutigkeitssatz von
Picard-Lindelof:

Satz 7.10. Es gibt T = T (ty,ug) € (to,00] und T~ =T~ (to,up) € [—00,t0), so dass
das maximale Existenzintervall (T, T%) das grifite Intervall ist, auf dem eine Losung u
von (7.6) existiert, die maximale Losung. Diese Losung ist eindeutig bestimmt, und alle
Losungen von (7.6) in Teilintervallen, die ty enthalten, sind Einschrankungen von u.
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Beweis. Wegen Lemma 7.8 ist
T+ = sup{T > ty | es gibt eine Losung von (7.6) in [to, T)}

grofler als ¢y (0o ist moglich). T~ wird analog definiert. Wir konstruieren eine eindeutige
Losung uw auf (77, 77%): Sei t € (T, T"). Dann existieren T~ < a < tp < b < T mit
t € (a,b). Aus der Definition von T~ und 7" folgt (mit Hilfe von Bemerkung 7.9 fiir den
Punkt ty), dass eine Losung u,p, von (7.6) in (a, b) existiert. Wir konnen u(t) = g, (%)
setzen, weil dieser Wert wegen Lemma 7.7 nicht von der Wahl geeigneter a und b abhangt.
Es ist klar, dass u die verlangten Eigenschaften hat.

Es fehlt nur noch zu zeigen, dass (T, T") das maximale Intervall ist, auf dem eine
Losung existiert. Im Fall 7T = co und T~ = —oo ist dies klar. Wir untersuchen nur
den weiteren Fall T~ = —oco und T+ < oo, die anderen Félle behandelt man analog.
Angenommen, es gibe eine Losung u auf einem Intervall, das echt grofler ist als (T, 7).
Nach Definition von 7'* kann das nur das Intervall (7, 7*] sein. Dann ist u also stetig
differenzierbar nach T fortsetzbar und es gilt (T, u(T")) € U. Dann gibt es nach
Lemma 7.8 eine Losung v der Differentialgleichung mit dem Anfangswert (7", (7)) in
einem Intervall (T" — e, T" 4 ¢) mit ¢ > 0. Mit Bemerkung 7.9 folgt, dass die Funktion

w(t) = {u(t) t e [to, T]

v(t) te (TT, Tt +¢)

eine Losung von (7.6) in [tg, Tt + ¢) darstellt, im Widerspruch zur Definition von 7.
Dies zeigt, dass keine Losung auf (T, 7] existiert. O]

Korollar 7.11. Sei Gt der Graph der Einschrankung der eindeutigen mazimalen Losung
w von (7.6) auf [to, TT). Dann ist G+ keine kompakte Teilmenge von U. Es tritt genau
eine der folgenden Maoglichkeiten ein:

(i) TT = ooy
(ii) T < oo und limy 7+ |u(t)| = oo;
(i) T* < oo und lim inf, 7+ dist((¢, u(t)),0U) = 0.
Analoge Aussagen gelten auf (T, to]. Man sagt auch: ,u verlduft von Rand zu Rand*

Beweis. Angenommen, G+ wire eine kompakte Teilmenge von U. Dann ist M =
maxgr|f| < oo und daher |4| < M fiir t € [t), 7). Demnach ist u dort Lipschitzstetig
und besitzt eine stetige Fortsetzung nach TF (Ubung!) mit (T, u(T")) € U. Wegen
Bemerkung 7.2(c) ist v dann eine Losung auf [tg, 77]. Widerspruch zur Maximalitét!
Das beweist die erste Aussage.

Ist G+ nicht kompakt und 7% < oo, dann muss (ii) gelten. Ist G+ kompakt aber keine
Teilmenge von U, dann folgt T+ < oo, G+ NOU # & und daher (iii). O
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Proposition 7.12. Unter den Bedingungen fir Satz 7.10 und im Fall U == I x RN fiir
ein offenes Intervall I mit ty € I nehmen wir zusdtzlich an, dass f im zweiten Argument
linear beschrankt ist, d.h. dass gilt

t
(7.7) C:= sup |/t )]
(taw)elxry 1+ |7

< 00.

Dann ist I das mazimale Ezistenzintervall fir (7.6).

Beweis. Sei I = (a,b) mit a € [—00,00) und b € (—o0, 0c]. Unter der Annahme 77 < b
erhalten wir |f (¢, z)| < C +C|z| fir x € RY und ¢ € [ty, T") und daher fiir die Maximale
Losung u:

ut)] < Juo| + / (s, u(s)[ds < ug| + C(T+ — 1) + C / fu(s)] ds.

Das Lemma von Gronwall, Lemma 7.6, liefert, dass |u(t)| in [to, ") beschrankt ist. Nach
Korollar 7.11 muss also liminf; .7+ dist((¢, u(t)), 0U) = 0 gelten. Andererseits gilt aber
dist((t,u(t)),0U) > min{b— T, to —a} > 0 fir t € [to, TT). Widerspruch! Es muss also
T+ = b gelten. Analog zeigt man T~ = a. O

7.2 Explizite Losungen spezieller Differentialgleichungen

Im Folgenden betrachten wir haufig autonome Differentialgleichungen, d.h. Gleichungen
der Form @ = f(u). Ist u eine Losung des Anfangswertproblems u = f(u), u(ty) = ug, so
ist u(t +ty) eine Losung des Anfangswertproblems 4 = f(u), u(0) = uy. Demnach gentigt
es fiir autonome Differentialgleichungen stets den AnfangsZeitpunkt to = 0 zu betrachten.

7.2.1 Getrennte Variablen

Seien g: Iy — R, f: I, — R stetige Abbildungen. Wir suchen einen expliziten Ausdruck
fiir die Losung des Anfangswertproblems

(7.8) = f(u)g(t), u(to) = uo,

fir (tg,ug) € Iy x I5. Ist f(ug) = 0, so ist u(t) = ug eine Losung von (7.8). Ist andererseits
f(up) # 0, dann existiert aufgrund der Stetigkeit von f eine Losung u: I C I; — R von
(7.8) mit f(u(t)) # 0 fir ¢ € I. Durch Umstellen und Integrieren nach ¢ erhalten wir mit

einer Substitution
u 1 t U(S) /t
dv = ds = g(s)ds.
o 70 ) Tl ¥, 0

Koénnen die Integrationen explizit durchgefiihrt und danach nach u aufgelost werden,
dann erhalten wir eine explizite Darstellung fiir w.
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Beispiel 7.13.

(a) Sei I C R ein offenes Intervall und p: I — R stetig. Dann hat die (eindimensionale)
homogene Differentialgleichung @ + p(t)u = 0, u(tg) = uo, fir jedes ug € R eine
eindeutig bestimmte Losung in I, nach Proposition 7.12, siche auch Abschnitt 7.2.3.
Ist ug = 0, dann ist u = 0 die gesuchte Losung, und ist ug # 0, so muss wegen der
Eindeutigkeit auch u(t) # 0 fir alle ¢ € I gelten. Aus dem Zwischenwertsatz folgt
wegen wegen der Stetigkeit von u, dass u(t) immer dasselbe Vorzeichen wie u, hat.
Wir erhalten eine (fast) explizite Darstellung von u durch Integrieren und Auflosen
(fiir up > 0):

u 1 t s
log(u) — log(ug) = / —dv = —/ p(s)ds, also  u(t) = uge JigP(s)ds.

ug v to
Analog gilt u(t) = ugexp ( — j;'; p(s) ds> fiir uy < 0.

(b) Betrachte # = u? mit u(0) = uy. Da u = 0 die Gleichung fiir uy = 0 16st, ist eine
Losung mit ug > 0 ebenfalls stets positiv und wir erhalten

t “1 1 1
t:/lds:/ —de:——+—,
0 wo U u - ug
1

also u(t) = (-~ — )" = 2. Das maximale Existenzintervall ist also (—oo, -).
0 uot uo

7.2.2 Exakte Differentialgleichungen

Eine exakte Differentialgleichung ist eine Gleichung der Form
(7.9) M(t,u) + N(t,u)u =0,

wobei M, N: U C R? — R zwei stetige Abbildungen sind, so dass (4!) ein Gradientenfeld
ist. Sei (to,uo) € U so, dass N (to,up) # 0 gilt. Dann besitzt das zugehorige AWP nach
Satz 7.10 eine Losung u. Ist W ein Potential von (%), dann gilt $W(¢, u(t)) = 0 wegen
(7.9), d.h. es existiert eine Konstante K € R mit ¥(¢,u(t)) = K fiir alle ¢ nahe bei ¢y. Diese
berechnet man mit der Anfangsbedingung: K = W(ty, ug). Die Gleichung W(¢,u(t)) = K
liefert eine explizite Darstellung fiir u, falls sie sich nach u auflosen lasst. Falls nicht,
dann erhélt man zumindest eine implizite Darstellung des Tragers der Losungskurve
(t,u(t)) als die Menge ¥~1(K).

Sind M und N stetig differenzierbar und ist U ein Sterngebiet, dann ist (7.9) nach
Mathe 2 (Satz 5.107) genau dann exakt, wenn 9,M = ;N iiberall in U gilt. So kann
man in der Regel die Exaktheit priifen.

Im Falle, dass die Differentialgleichung (7.9) exakt ist, erhalten wir ¥ durch unbe-
stimmte Integration von M beziiglich ¢t und von N beziiglich u und einem abschlieenden
Vergleich der jeweils von der anderen Variablen abhéngigen Integrationskonstanten.
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Beispiel 7.14. Betrachte die Gleichung
(3u + ") + (3t + cos(u))i = 0.

Dann ist M (t,u) := 3u + €' und N(¢,u) := 3t + cos(u). Dabei gilt 9,M = 3 = 9;N, d.h.
die Differentialgleichung ist exakt.

(i) Integrieren von M nach ¢ liefert
U(t,u) = /t(?)u +e") dt = 3ut + €' + g(u).
(ii) Integrieren von N nach u liefert
U(t,u) = /U(Bt + cos(u)) du = 3tu + sin(u) + h(t).

(iii) Vergleichen liefert das Potential W(¢, u) = 3tu+e’+sin u. Entlang der Losungskurve
gilt ¥(t,u) = K fir eine Konstante K € R, die mit Hilfe der Anfangsbedingungen
ermittelt werden kann.

Im Falle, dass (7.9) nicht exakt ist, kann die Gleichung hiufig ,exakt gemacht werden®.
Hierfiir multiplizieren wir wir (7.9) mit einem geeigneten Integrationsfaktor p: U — R,
so dass p # 0 in U gilt und so dass

(7.10) p(t, w)M(t,u) + p(t, w)N(t, u)i =0

exakt ist. Diese Gleichung ist wegen p # 0 dquivalent zu (7.9), d.h. hier, dass die Losung
u einer Gleichung auch die andere Gleichung 16st. Fiir stetig differenzierbare M, N, i und
ein Sterngebiet U ist (7.10) genau dann exakt, wenn

B, (uM) = B, (i)
gilt, d.h. wenn p eine Losung der partiellen Differentialgleichung

ist. Im Allgemeinen ist diese Gleichung nicht einfach zu lésen. Wenn allerdings

1
— (O,M — O.N

L (0.0~ 0N)
unabhéngig von t ist, dann ist auch g unabhéngig von ¢, und somit ist nur noch die
gewohnliche lineare Differentialgleichung erster Ordnung

1
i+~ (M = 9N p =0

zu 16sen um 4 zu bestimmen. Analog bestimmt man unter Umsténden einen Multiplikator
1, der von u unabhangig ist.
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Beispiel 7.15. Wir betrachten die Differentialgleichung tu + t?u = 0. In diesem Fall ist
M(t,u) = tu und N(t,u) = t* und es gilt

Damit ist die Integrabilitatsbedingung nicht erfiillt. Jedoch gilt

1 1 1
— (O M —ON)=— (t —2t) = ——.
M ( W) ut< ) U
Die Differentialgleichung fiir u, die es zu losen gilt, ist demnach
, 1
pw——p=0,
u

welche die Losung p(u) = u hat. Durch Multiplizieren der Differentialgleichung fir u mit
p(u) = u erhalten wir die exakte Differentialgleichung

tu? + t2uu = 0.
Es gilt:

(i) Integrieren von uM nach t liefert
! 1
U(t,u) = / tu? dt = §t2u2 + g(u)
(ii) Integrieren von uN nach u liefert

“ 1
U(t,u) = / t*udu = §t2u2 + h(t)

(iii) Vergleichen liefert das Potential ¥(¢,u) = 1¢*u?. Und somit kann eine explizite
Losung der Gleichung mit Hilfe einer Fallunterscheidung abhéngig vom Anfangswert
gefunden werden.

7.2.3 Lineare Differentialgleichungen

In Mathe 2 hatten wir bereits gesehen, dass es fiir A € RY*Y eine Losung der homogenen
Differentialgleichung
= Au, u(0)=uycRY

gibt, welche durch u(t) = e*uy gegeben ist. Wegen Satz 7.10 ist diese Lésung eindeutig
bestimmt. Im Folgenden werden wir nicht-autonome lineare Differentialgleichungen, d.h.
wo A = A(t) von t abhéngt und inhomogene lineare Differentialgleichungen, d.h. vom
Typ @ = A(t)u + ¢q(t) mit g # 0, ndher untersuchen.

Zunéchst betrachten wir den Fall N = 1 und die nicht-autonome inhomogene lineare
Differentialgleichung

(7.11) i+ p(t)u = q(t),
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wo p,q: I — R auf dem offenen Intervall I stetige Funktionen sind, und wir betrachten
(to,uo) € U =1 x R. Wir setzen f(t,x) = q(t) — p(t)x. Sei J ein beschrénktes offenes
Intervall mit ty € J und J C I. Dann existiert C' := max{maxz|p|, maxz|q|}. Es folgt

\f(t,z)| < C(1+ |x|) fur alle (t,z) € J x R.

Proposition 7.12 liefert also, dass w in J existiert. Da J mit obigen Eigenschaften beliebig
gewihlt war, existiert v in ganz I.

Wir setzen r(t) = ftz p. Fir ¢ = 0, also fiir die homogene Gleichung, liefert Bei-
spiel 7.13(b) u(t) = uge™™®. Um eine Losung fiir das inhomogene AWP zu finden, ist die
Idee, statt der Konstanten 1y in der homogenen Losung einen zeitabhangigen Faktor zu
verwenden, also

u(t) = C(t)e "

als Ansatz zu nehmen. Man spricht daher von der Methode der Variation der Konstanten.
Ist dieser Ansatz eine Losung, so gilt notwendig wegen 7 = p:

q:a-l—pu:e_r(C"—Cp—i—Cp) —eC

und C'(t9) = up. Nach Umstellen und Integrieren erhalten wir also

t
C(t) :U0+/ qe”

to

t
u= (uo +/ qer) e "
to

Man priift leicht nach, dass dies andererseits wirklich eine Losung des AWP von (7.11)
ist. Oft formuliert man diesen Sachverhalt so: Sei

t
Up = </ qer) e ",

eine partikuldre Losung von (7.11) (also einfach irgendeine Losung), definiert mit einer
beliebigen Stammfunktion von ge”. Dann erhdlt man alle Losungen von (7.11) in der
Form

und insgesamt

_ —r
u=ae = + Up,

also als ein Vielfaches der Losung der homogenen Gleichung plus der partiku-
laren Losung. Die konstante a wihlt man so, dass die vorgegebenen Anfangswerte
angenommen werden.

Nun betrachten wir den allgemeinen Fall N € N und nehmen an, dass I ein offenes
Intervall ist und dass A: I — RY*N und ¢q: I — RY stetig sind. Wie zuvor zeigt man
mit Proposition 7.12, dass dann das Anfangswertproblem

(7.12) uw=A(t)u+q(t), u(to) = uo,
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fiir (to, up) € I xRY eine eindeutige Losung besitzt, die auf ganz I existiert. Im homogenen
Fall ¢ = 0 ist die Abbildung RY — C'(I,RY), welche fiir festes ¢y jedem Anfangswert ug
die eindeutige Losung von (7.12) zuordnet, offensichtlich linear und injektiv. Daher ist
der lineare Raum der Losungen von

(7.13) = A(t)u

N-dimensional. Sei U: I — RY¥*¥ eine Matrixfunktion, deren Spalten aus Lésungen von
(7.13) bestehen, also eine Losung der Matrixgleichung

(7.14) U= A(t)U.

Die Funktion W (t) := det(U(t)) heifit dann Wronskideterminante von U. Man kann
zeigen, dass W die Differentialgleichung W = Spur(A(¢))W erfiillt, dass also wegen der
Betrachtungen im Fall N =1

t
W(t) = W (to) exp (/ Spur(A(s)) ds)
to
gilt. Insbesondere ist W (t) # 0 fiir alle ¢ € I genau dann, wenn W (ty) # 0 gilt, in anderen
Worten: U(t) ist invertierbar fiir alle ¢ € I genau dann, wenn U (t) invertierbar ist. In
diesem Fall nennt man U ein Fundamentalsystem von (7.13). Wahlt man U so, dass
U(to) = En (Einheitsmatrix in RY) gilt (ersetzt man also U durch UU(ty)™!), dann
heifit U auch kanonisches Fundamentalsystem. Die Losung von (7.13) mit Anfangswert
(to, up) ist dann durch U(t)uy gegeben. Im Allgemeinen ist die Bestimmung eines Fun-
damentalsystems schwierig. Kennt man allerdings eine Losung von (7.13), dann kann
dieses Problem mit dem Reduktionsverfahren von d’Alembert auf N — 1 Dimensionen
reduziert werden.

Um das Fundamentalsystem e fiir konstantes A € RV*N zu berechnen, geht man
wie folgt vor: Seien )\, € C die Eigenwerte von A mit (algebraischen) Vielfachheiten
l; € N. Dort, wo im Folgenden komplexwertige Losungen entstehen, sind jeweils Real-
und Imaginéirteil reellwertige Losungen, weil mit )\, immer auch ), ein Eigenwert ist.

e Existieren /) linear unabhéngige Eigenvektoren vy, ..., v, € CY zu \;, dann sind
vje)‘kt, k=1,2,..., /0, linear unabhingige Losungen.

e Sei andernfalls v ein Eigenvektor, so dass (A — \g)w = v fir ein w gilt. Dann ist
Mt (tv+w) eine Losung. Falls (A— ;)2 = w fiir ein z gilt, dann ist e*! (220 +tw+a)
eine Losung, usw. Auf diese Art und Weise erhilt man ¢, linear unabhéngige
Loésungen (indem man alle Eigenvektoren so verwendet).

Siehe [16, 21, 36] fiir eine ausfihrliche Beschreibung.
Fiir das inhomogene lineare Anfangswertproblem (7.12) liefert die Idee der Variation
der Konstanten die Losungsformel

(7.15) u(t) = U () (uo + / () g(s) ds)

to
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wobei U das kanonische Fundamentalsystem von (7.13) sei. Im Spezialfall, das die
Matrixfunktion A konstant ist, ergibt sich fiir die Losung

t
(7.16) u(t) = e ug + / e=4¢(s) ds.

to

7.3 Skalare Differentialgleichungen hoherer Ordnung

Wir betrachten fir n € N, U € R x R” offen und f: U — R stetig die (skalare)
Differentialgleichung n-ter Ordnung

(7.17) u™ = f(t,u,a, ..., u")
mit dem Anfangswert
(7.18) (u, i, ..., u" ") (to) = ug = (o, 1, ..., 1) € R™

Wir definieren f: U — R" durch

ft,x) =

f(t7x17$27"'7xn)

Satz 7.16 (Reduktionsprinzip). Eine Funktion u ist genau dann eine Lisung von (7.17),
wenn

(7.19) V= u
n'fl)

ul

eine Losung des Systems von Differentialgleichungen erster Ordnung

(7.20) 0= f(t,v)
ist.
Beweis. Dies folgt durch komponentenweise Betrachtung von (7.20). [

Satz 7.17 (Existenz- und Eindeutigkeit). Sei U C R x R™ offen und f: U — R stetig,
und lokal Lipschitzstetig in den n letzten Argumenten. Dann hat das Anfangswertproblem
(7.17) und (7.18) eine mazximale eindeutige Losung.

Beweis. Folgt sofort aus den Satzen 7.16 und 7.10. m
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7.3.1 Lineare Differentialgleichungen hoherer Ordnung

Wir betrachten zunéchst die spezielle inhomogene lineare Differentialgleichung mit kon-
stanten Koeflizienten

(7.21) Lu = u™ + ap_1u™ ™V + - 4 a0 + agu = Q(t)e

mit dem Anfangswert (7.18) fiir ag, ...,a,-1 € R, und mit einem Polynom ) mit reellen
Koeffizienten und ¢ € C (dies erlaubt es, Inhomogenitaten mit Faktor cos und sin als
Real- und Imaginérteil der unten konstruierten partikuldren Losung zu behandeln). Wie
in Abschnitt 7.2.3 gezeigt existiert dann die eindeutige Losung des Anfangswertproblems
in ganz R. Die homogene Gleichung hat nach dem Reduktionsprinzip fiir v wie in (7.19)
die Form v = Av, mit

0 1
1
A= ,
—Go —ap - —Qp-1
also Spur(A) = —a,_;. Ein Fundamentalsystem der homogenen Gleichung hat dann die
Form
Uq Uo e Up,
o Uy - Uy
ugnfl) uénfl) o u7(1n_711)

und die zugehorige Wronskideterminante W erfiillt
(7.22) W = —a,,W.

Sei P(\) = A"+ a, (A" '+ -+ a;\ + ag das charakteristische Polynom von L mit m
komplexen Nullstellen A\, der Vielfachheit ¢,. Aus dem Reduktionsprinzip, Satz 7.16, und
der Losung von linearen Systemen erster Ordnung ergibt sich als Fundamentalsystem

(7.23) {tieM | k=1,2,...,m, j=0,1,... 6, —1}.

Um ein reelles Fundamentalsystem zu erhalten verwendet man wieder jeweils Real- und
Imaginarteil.
Um eine partikuldre Losung von (7.21) zu erhalten macht man den Ansatz

w=t"(by + byt + -+ + bt")e,

wo 1 € Ny der Grad von @) ist und by, . .., b, € R. Man wahlt £ = 0, falls P(c) # 0 gilt und
¢ die Vielfachheit der Nullstelle, falls P(c) = 0 gilt. Fiir eine Summe von Inhomogenitaten
berechnet man die partikuldren Losungen getrennt und summiert Sie dann auf.
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Die allgemeine Losung von (7.21) ist dann eine Linearkombination der Funktionen in
(7.23) (an die Anfangsbedingung angepasst) plus die partikuldre Losung.

Wir betrachten jetzt noch lineare Differentialgleichungen zweiter Ordnung mit zeitab-
hangigen Koeffizienten:

(7.24) i+ ay(t)a + ao(t)u = q(t).

Die Funktionen ag, a1, ¢ seien auf einem offenen Intervall I stetig. Ist eine Losung v der
homogenen Gleichung (¢ = 0) bekannt (z.B. erraten oder vorgegeben), so ist der Ansatz
von d’Alembert hier u = vw, um eine weitere, linear unabhéngige, homogene Losung zu
finden. Fir die zugehorige Wronskideterminante gilt

B v vw 9.
W (t) = det (v bw+vu')) = v*,

also w = W/v?. Andererseits konnen wir W aus W = —ay(t)W bestimmen. Dann ist
w eine Stammfunktion von W/v? und wir erhalten das Fundamentalsystem {v,vw} =
{u1,us}. Eine partikuldre Losung erhalt man jetzt wieder mit der Methode der Variation
der Konstanten. Konkret macht man den Ansatz

u = c1(t)uy + co(t)us.
Dieser fithrt auf

. q(t)ug . q(w
61 = — W und =

so dass man ¢; und cy durch Integration erhalt.

7.4 Qualitative Theorie nichtlinearer Systeme

Wir betrachten in diesem Abschnitt meist autonome Differentialgleichungen, d.h. Diffe-
rentialgleichungen der Form

(7.25) = f(u)
mit f: D — RY lokal Lipschitzstetig und D C R offen. Sei
U= {(t,x)eRxD|te (I (z),TH(x))}.

Wir definieren den Fluss ¢: U — D von (7.25) dadurch, dass fiir € D die Funktion
(T~ (z),T*(x)) — D mit t — ¢(t,z) nach Satz 7.10 die maximale Losung des Anfangs-
wertproblems (7.25) mit u(0) = z sei. Wir schreiben auch ¢;(x) = ¢(t,z). In diesem
Zusammenhang heiit RY auch Phasenraum. Gilt (T~ (z), T (x)) = R fiir alle z € D,
dann ist U = R x D und wir sagen, ¢ sei ein globaler Fluss. Dies ist nach Proposition 7.12
zum Beispiel der Fall, wenn D = R” gilt und f linear beschrinkt ist.
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Bemerkung 7.18. Fiir den Fluss ¢ einer Differentialgleichung gilt stets

Yo = idRN7

da ja ¢(-,z) die Losung mit Anfangswert x ist, also ¢(0,z) = x gilt. Aus der Existenz
und Eindeutigkeit der Losung und aus Bemerkung 7.9 folgt ferner

o(t,p(s,z)) =p(s+t ) falls (s,z), (s +t,z) € U.
Im Falle der globalen Existenz U = R x R gilt also ¢; 0 0, = ©giy.
Satz 7.19. Die Menge U ist offen und ¢ ist lokal Lipschitzstetig.

Beweis. Wir beweisen dies nur im Fall D = R und f Lipschitzstetig, mit Lipschitzkon-
stante M. In diesem Fall ist f linear beschrankt, denn |f(z)| < |f(x) — f(0)] + | f(0)] <
M|z — 0] + |f(0)|. Wegen Satz 7.10 ist der Fluss also global, d.h. U = R x R".

Sei R > 0. Fiir (t,11), (t,72) € [-R, R] x Br(0) folgt aus Bemerkung 7.2(c) im Fall
t>0

[p(t,21) — @(t, 22)| < |21 — 23 +/0 |f(p(s, 1)) — f(p(s,22))] ds

t
<lor = ol + M [ fols,0) = o(s.23) .
0
Das Lemma von Gronwall liefert in dieser Situation also
(7.26) o(t, 1) = p(t, 29)| < eM'ay — ao| < MFay — ],

Der Fall ¢t < 0 geht analog und liefert dieselbe Abschatzung.
Wir betrachten die kompakte Menge K = o([—R, R],0) und setzen L; = maxg]|f|.
Fir (t,z) € [-R, R] x Br(0) folgt aus (7.26)

|wmm§m+luw@mnm
SM+AUﬂMwm—fww®H+WM&WD®

eK

<R(1+ L)+ M/Ot\go(s,x) —¢(s,0)|ds

t
< R(1+Ly)+ MeMR/ |z| ds
0
< R(1+ Ly) + MeMER? =: L,.
Jetzt sei Ly == max{[f(z)| | |z| < La}. Dann liefert die letzte Ungleichung fiir (¢1, z), (t2, 7) €
[—R, R] x Br(0) unter der Annahme t; < ¢,

(7.27) |mm@—wmwns[7ﬂma@wusmm—uy
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(¢c)a<0

Abbildung 7.1: Richtungsfeld von @ = au

Zusammen liefern (7.26) und (7.27), dass ¢ auf [~ R, R] X Br(0) Lipschitzstetig ist: Fiir
(t1,71), (ta, x2) € [-R, R] x Bg(0) gilt namlich jetzt

p(t1, 21) = @(ta, 2)| < [(ty, 1) — p(tr, 22)] + |o(t1, 22) — @(ta, 22)]
< My — ol + Lslty — ta| < Ly|(t1, 21) — (f2, 32)|.

Die letzte Ungleichung folgt aus der Aquivalenz aller Normen in R x RY mit einer
geeigneten Konstante L,. Da R beliebig war, folgt die Behauptung. O]

Es gibt nun verschiedene Méglichkeiten, sich die Gleichung (7.25) zu veranschauli-
chen. Eine Moglichkeit ist es, das Vektorfeld f im Phasenraum einzuzeichnen. Da eine
Losungskurve durch x stets der Richtung des Vektors f(z) folgt, spricht man hier vom
Richtungsfeld. Alternativ kann auch die Kurve t — ¢;(x) fiir verschiedene = im Pha-
senraum eingezeichnet werden. Diese Veranschaulichung wird auch als Phasenportrdit
des Flusses bezeichnet und fiir jedes festes uy wird die Kurve ¢ +— ¢;(ug) als Orbit oder
Trajektorie bezeichnet.

Beispiel 7.20.

(a) Wir betrachten zunéchst den einfachen Fall & = au, a € R. Dann ist der Phasenraum
gegeben durch R, sieche Abb. 7.1. Ein Phasenportrait ergibt hier wenig Sinn, da
die Trajektorien einfach Intervalle darstellen und keine interessante Information
enthalten. Sinnvoll wére hier eher, jeweils den Graphen einer Losung aufzuzeichnen.

(b) Wir betrachten die Gleichung @ = f(u) = 3(u — ). Dann ist der Phasenraum
gegeben durch R, siche Abb. 7.2.

(c) Wir betrachten & + 2p0 + w?v = 0, w,p > 0, w? + p* > 0. Mit Satz 7.16 fithren wir
dies auf die Gleichung

(7.28) ﬂz(g;):(—iﬂ —12p)(32>
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Graph(f)

Abbildung 7.2: Richtungsfeld von @ = f(u) == §(u — u?)
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Abbildung 7.3: 0 = p < w: Richtungsfeld und Phasenportrait

zuriick. Der Phasenraum ist dann durch R? gegeben.
(a) Fall p =0, keine Dampfung: Siehe Abb. 7.3.
(b) Fall 0 < p < w, geddmpfte Schwingung: Siche Abb. 7.4.

(c) Fall 0 < w < p, starke Dampfung: sieche Abb. 7.5.

Wir wollen nun untersuchen, wie die Losungen langfristig auf Anderungen der An-
fangsbedingung reagieren. Fiir beschrinkte Zeiten zeigt die lokale Lipschitzstetigkeit
des Flusses, dass sich die Trajektorien in stetiger Abhéngigkeit von den Anfangswerten
verandern. Interessiert man sich jedoch fiir (positiv) globale Losungen, das heifit, Lo-
sungen, die fiir alle positiven Zeiten existieren, dann ist diese Frage nicht so einfach zu
beantworten und fiihrt uns auf den Begriff der Stabilitdit:

Definition 7.21. Es sei f € C*(]0,00) x RY RY). Wir betrachten die Differentialglei-
chung

(7.29) 0= f(t,u).
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Abbildung 7.4: 0 < p < w: Richtungsfeld und Phasenportrait
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Abbildung 7.5: 0 < w < p: Richtungsfeld und Phasenportrait
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(a) Eine Losung u von (7.29) auf [0, 00) heifit stabil, wenn es zu jedem € > 0 ein § > 0
gibt mit Folgender Eigenschaft: Zu jedem Startwert @(0) € RY mit |u(0)—a(0)] < &
existiert eine Losung @ von (7.29) auf [0, 00), und es gilt

lu(t) —a(t)| <e fir alle ¢t > 0.

(b) Eine Losung u von (7.29) heiit asymptotisch stabil, wenn sie stabil ist und 6 > 0
existiert, so dass fir jeden Startwert @(0) mit |u(0) — @(0)] < § gilt

(7.30) Tim [u(t) — a(t)| = 0.

(c) Eine Losung u heifit instabil, wenn sie nicht stabil ist.

Wir werden uns im Folgenden auf die Stabilitdtsuntersuchung von Gleichgewichtslo-
sungen autonomer Differentialgleichungen einschranken. Ist u eine asymptotisch stabile
Gleichgewichtslosung, so nennt man wug auch einen (Punkt-)Attraktor. Durch Betrachtung
von U = f(u — up) kdnnen wir stets vy = 0 annehmen. Dementsprechend werden wir im
Folgenden stets untersuchen, ob die triviale Losung stabil, asymptotisch stabil oder
instabil ist.

Beispiel 7.22. Wir betrachten nun die Stabilitat einiger Gleichgewichtslosungen aus
Beispiel 7.20.

(a) Fur die Gleichung @ = au ist u = 0 eine Gleichgewichtslosung (die einzige, falls

a#0). Da p(u) = ue™ gilt, folgt

stabil, aber nicht asymptotisch stabil fiir a = 0,
u =0 ist asymptotisch stabil fiir a < 0,
instabil fir a > 0.

(b) Fiir die Gleichung @ = u — u? sind v = 0 und u = 1 die Gleichgewichtslosungen.
Dabei ist 0 instabil und 1 asymptotisch stabil.

(c) Fir die lineare autonome Differentialgleichung 2. Ordnung © + 2p0 +w?v = 0, w > 0,
p > 0 gilt:

(a) Fiir p = 0 ist im reduzierten System im R? die Losung (0,0) stabil, aber nicht
asymptotisch stabil.

(b) Fiir p > 00 ist der Punkt (0,0) asymptotisch stabil.

7.4.1 Lineare autonome Systeme

Lemma 7.23. Es sei A € C"*™ und es seien Ay, ..., \, die Eigenwerte von A, gemaf
Vielfachheit mit Mehrfachnennungen. Zu o >~y = maxj_, Re(\;) ewistiert ¢ >0 mit!

[ed]] < ce®t fir alle t > 0.

|Bo|

!Erinnerung: Fiir eine Matrix B € C"*" ist || B|| = SUD, RN\ {0} ToT -
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Beweis. Nach Abschnitt 7.2.3 hat das kanonische Fundamentalsystem e*4 von @ = Au
Matrixeintrige (Koordinaten) der Form ¢ +— »77 eMtP;(t), wobei Pj: R — C jeweils
ein Polynom vom Grad < n — 1 ist. Es folgt

supe”
£>0

Zeij(t)‘ < sup @ S ()] < oo,
=1 j=1

>0

wegen v — « < 0. Die Aquivalenz aller Normen in C" liefert also mit geeignetem C > 0

tAHOO

supe”®|[e't|| < Csupe |l < 00.
>0 £>0

Hier bedeutet ||| wie immer das Maximum aller Matrixeintréige. O

Satz 7.24. Seien A € C™" und v := max{Re \; | \; Eigenwert von A }. Wir betrach-
ten die Gleichung ©w = Au. Dann gilt

(a) Genau dann ist v < 0, wenn die triviale Losung u = 0 asymptotisch stabil ist.
(b) Wenn v > 0 ist, ist die triviale Losung u = 0 instabil.
(¢) Im Fall v = 0 ist keine allgemeine Aussage maglich.

Beweis. (a): ,=“: Falls v < 0 ist, folgt die asymptotische Stabilitdt aus Lemma 7.23,
denn jede Losung lasst sich als u(t) = e*u(0) darstellen. Ist ndmlich o := % >~ und ¢

wie in Lemma 7.23, so folgt fiir [u(0)| < &:
u(t)] < [led]||u(0)] < ceS < ee <& fiiwt >0,
C

da a < 0. Insbesondere folgt hieraus lim;,o|u(t)| — 0.
(b): Ist A ein Eigenwert von A mit Re A > 0 und ist vy # 0 ein zugehoriger Eigenvektor,

so folgt fiir die Losung v(t) := eMuy:

ReAt _ 0.

lim v ()| = lim |vgle
t—o0 t—o0
Es folgt (b).
(a): ,<=“: Ist v > 0, so existiert wie im Beweis von (b) eine Losung v(t) = e
Re A = 0 und vy # 0. Fur diese Losung gilt v(t) /4 0. Es folgt (a).
(c): Fur A = (39) ist die triviale Losung stabil. Fur A = (J}) existiert die Losung
(1) und somit ist die triviale Losung instabil. Es folgt (c). O

My mit

7.4.2 Nichtlineare autonome Systeme

Wir wollen nun die Resultate des vorherigen Abschnitts anwenden, um die Gleichge-
wichtspunkte von (7.25) zu untersuchen. Hierfiir sei f € CY(RY,RY) mit f(0) = 0. Dann
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besitzt die Gleichung @ = f(u) die Gleichgewichtslésung u = 0. Ferner sei A := D f(0)
die Jacobimatrix von f in 0. Nach Definition der Differenzierbarkeit konnen wir daher

(7.31) fu) = Au+ g(u) mit lim lgtw] =0

u—0 |U,|

schreiben. Der nichste Satz zeigt, dass die Eigenwerte der Jacobimatrix von f in 0 die
Dynamik des Systems nahe bei 0 bestimmen:

Satz 7.25. Es sei f € CYRY RY) mit f(0) =0 und A := Df(0), so dass (7.31) fiir
eine Funktion g gilt. Ferner sei v :== max{Re X | A\ Eigenwert von A}. Dann gilt fir die
triviale Losung uw =0 von u = f(u):

(a) Isty <0, so ist die triviale Losung asymptotisch stabil.

(b) Ist v >0, so ist die triviale Losung instabil.

(c) Isty =0, so ist keine allgemeine Aussage maglich.
Beweis. Siehe [36, §29]. O

Bemerkung 7.26. Zu beachten ist, dass im Gegensatz zu Satz 7.24(a) die Aussage von
Satz 7.25(a) keine Aquivalenz liefert. Betrachte hierfiir speziell f(z) = —ﬁe_m%, x#0
und f(0) = 0, dann ist f € C*°(R) mit f*)(0) = 0 fiir alle k € Ny, jedoch ist u = 0
asymptotisch stabil fir @ = f(u) (s.u.).

Bemerkung 7.27. Beachte, dass die Stabilitatsaussagen aus Satz 7.25 ebenso fiir
nichttriviale Gleichgewichtslosungen ug gelten aufgrund der Translation um ug, d.h. die
Stabilitat der Gleichgewichtslosung uy hangt von den Eigenwerten von D f(ug), wie in
Satz 7.25 beschrieben, ab.

Beispiel 7.28. Als eine Anwendung von Satz 7.25 betrachten wir die folgende Lotka-
Volterra Gleichung. Hierbei seien aq, as, by, by > 0 und wir untersuchen

?),1 = —a1U1 + b1u1u2
Up =  agug — bayujug

Hierbei beschreibt u; eine Population von Raubern, die mit Rate a; sterben, wenn sie
nicht genug zu fressen haben und wuy beschreibt die Population von einer Beute, die mit
der Rate as wachst. by ist die Rate, abhéngig von u; und us, wie die Rauber die Beute
fressen und b, ist die Rate, wie dies zum Uberleben der Rauber hilft.

Die nichtlineare rechte Seite ist dann

flur,ug) = ( —ayuy + biugus ) mit D (ur, us) = ( —a1 + bius biuy ) ‘

asty — batgug —boty as — bouy

s e ()35}
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N K & 4A—————
\\\5, zkw—%‘ﬂ\‘*&:\

\\\\x ey

Abbildung 7.6: Beispiel 7.28 mit a; =b; = as =by =1

Also gilt fiir die triviale Losung:

£(0,0) =0 und Df(0,0) = ( —a 0 ) :
0 (05}
Folglich sind die Eigenwerte von D f(0,0) die Werte as, —a; und da ay > 0 gilt folgt aus
Satz 7.25, dass die triviale Losung instabil ist.

Mit u* = (32, 3*) folgt

fu)=0 und Df(u*) = ( _b(lz_l 510(;—3 ) :

Folglich sind die Eigenwerte von D f(u*) gegeben durch +i,/ajas" Da diese rein imaginér
sind, konnen wir fiir diesen Fall aus Satz 7.25 keine Aussage tiber die Stabilitat von u*
machen. Wir kénnen jedoch zur groben Einschéitzung das Richtungsfeld heranziehen,
siehe Abb. 7.6.
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7.4.3 Die Lyapunovfunktion

Die in Satz 7.25 enthaltene Methode zur Analyse der Gleichgewichtslosungen wird auch
Linearisierung genannt. Im Folgenden wollen wir noch eine weitere solche Methode
betrachten.

Hierfiir seien p,w > 0 und wir betrachten die Schwingung

O+ 2p0 + W =0

bzw. das aquivalente System

(7.32) {“1 -

Uy = —2puUy — wuy.

Aus den Abbildungen 7.4 und 7.5 ist anschaulich klar, dass 0 ein asymptotisch stabiler
Gleichgewichtspunkt ist. Dies folgt genauer aus Satz 7.25 und daraus, dass die Eigenwerte
A = —p+ /p? —w? dann negativen Realteil haben. Um die physikalische Stabilitat
einzusehen, kann man auch die Energie des schwingenden Teilchens berechnen:

1, w,

(7.33) E = Eyin + Epot = 52 + o

Die Energie hat dabei im Gleichgewichtspunkt ein absolutes Minimum und ist ldngs der
Trajektorie wegen der Reibung streng monoton fallend:

&E(Ul, Us) = Unlly + WUyl (22 s (—2pus — wur) + wrugus = —2puj < 0,

und < 0 fiir uy # 0. Folglich ist zu erwarten, dass das schwingende Teilchen gegen die
Ruhelage strebt.

Definition 7.29. Es sei f € C'(R",R") und es gelte f(u*) = 0. Eine in einer Umgebung
U von u* definierte Funktion E € CY(U) heiBt Lyapunovfunktion (fir f), falls

(i) E bei u* ein striktes globales Minimum besitzt und
(ii) fiir die Funktion 0E: u — (VE(u), f(u)) <0 fir alle v € U gilt.

Gilt statt (ii) sogar die starkere Bedingung 0F(u) < 0 fiir alle u € U \ {u*}, so heifit E
strikte Lyapunovfunktion (fir f).

Bemerkung 7.30. Die Bedeutung der Funktion OF lésst sich wie folgt erkléren: Lost u
die Gleichung % = f(u) und existiert eine Lyapunovfunktion fiir f, so gilt fiir die zeitliche
Ableitung lings der Trajektorie u in E:

d

pEw) = (VE(u(t),u(t)) = (VE(u(t)), f(u(t))) = O (u(t)).

Die zweite Bedingung der Lyapunovfunktion besagt also, dass E' léngs der Trajektorie
abnimmt.

115



Satz 7.31. Sei f € CY(R",R") und es gelte f(u*) = 0. Falls eine es eine Lyapunovfunk-
tion E gibt, ist u* ein stabiler Gleichgewichtspunkt der Gleichung @ = f(u). Ist E eine
strikte Lyapunovfunktion, so ist u* ein asymptotisch stabiler Gleichgewichtspunkt.

Beweis. Siehe z.B. [21, Satz 67.1]. O
Beispiel 7.32. (a) Fiir die Gleichung (7.32) ist E(u,us) = uj + %ZU% eine Lyapu-
novfunktion.

(b) Bemerkung 7.26 ldsst sich zeigen, indem man die Lyapunovfunktion z + z?

betrachtet und dann Satz 7.31 anwendet.

(c) Wir betrachten wieder das Rauber-Beute Modell aus Beispiel 7.28. Wir versuchen

nun eine Lyapunovfunktion in einer Umgebung von u* = (‘;—;, %) als

E(Ul,UQ) = Fl(ul) + FQ(UQ)
anzusetzen. Man erhélt dann
GE(ul, UQ) = F{(ul)(—alul + b1u1u2) + FQ,(UQ)(CLQUQ — bQUﬂLQ).

Also ist 0F(uq,us) = 0 genau dann, wenn

U /
Fl(uy)————— = —Fj(us)

as — boty

U2
—ay + blUQ
gilt. Dies ist zum Beispiel durch

Qo aq
F — by — —= F — b — —
1(“1) 2 u 2(“2) 1 U

erfullt. Wir wahlen also
Fi(uy) = bouy — agloguy

FQ(UQ) = b1UQ — log U9

E(uy,ug) = bouy — agloguy + byug — aq logus.

Diese Funktion hat bei u* ein lokales Minimum, da VE(u*) = 0 und fir die

Hessematrix
G_ (%0 o 0
HE(U ) = 01 Ta;_% = 02 [
2 (u=u*) al

positiv definit ist. Es folgt mit Satz 7.31, dass u* ein stabiler Gleichgewichtspunkt
ist.

Man kann zeigen, dass die Losungen des Lotka-Volterra-Systems nahe bei u*
periodisch sind und auf den Kurven mit E(u) = const. verlaufen.
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