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1 Integration im RN

Wir wollen in diesem Abschnitt unsere Kenntnisse zur Integration einer Variable er-
weitern. In der Vorlesung Mathematik für Studierende der Physik I ist das sogenannte
Riemann-Integral eingeführt worden, welches jedoch nicht „vollständig“ ist in Bezug auf
Vertauschbarkeit von Integration und punktweise konvergenten Funktionenfolgen.

Um diese Eigenschaften zu verbessern, werden wir hier eine andere Herangehensweise
an das Integrieren vornehmen. Ziel ist es

• das Volumen für eine möglichst große Klasse von Teilmengen des RN zu bestimmen.

• das Integral für eine möglichst große Klasse von Funktionen f : A→ R, A ⊆ RN

zu definieren.

1.1 Halboffene Quader und ihre Zerlegung
Definition 1.1. Für a, b ∈ RN schreiben wir (a, b] := (a1, b1]× . . .× (aN , bN ] und nennen
Q := (a, b] einen (halboffenen) Quader. Die Zahl

|Q| :=
{

(b1 − a1) · . . . · (bN − aN), falls ai ≤ bi für alle i
0, falls ai > bi für ein i (d.h. falls Q = ∅)

heißt Volumen von Q. Die Menge aller halboffenen Quader in RN bezeichnen wir mit
QN .

Notation 1.2. Zwei Mengen A,B heißen disjunkt, falls A ∩ B = ∅. Sind A und B
disjunkt so schreiben wir A ∪· B als die disjunkte Vereinigung der Mengen A und B.

Satz 1.3. Seien Q,K ∈ QN . Dann gilt:

(a) Q ∩K ∈ QN .

(b) Es gibt endlich viele disjunkte Q1, . . . , Qk ∈ QN mit Q \K =
⋃
· ki=1Qi.

Beweis. (a): Ist Q = (a, b] und K = (c, d] mit a, b, c, d ∈ RN , so ist Q ∩ K = (x, y],
x, y ∈ RN gegeben durch xi = max{ai, ci} und yi = min{bi, di}, i = 1, . . . , N .
(b): Wir dürfen zunächst annehmen, dass K ⊆ Q gilt. Andernfalls können wir K unter

Betrachtung von (a) durch Q∩K ersetzen. Ferner sei ohne Einschränkungen Q 6= ∅ 6= K.
Wir argumentieren nun per Induktion nach N :

„N = 1“: Sei Q = (a, b] und K = (c, d] mit a, b, c, d ∈ R, a ≤ c < d ≤ b. Dann ist
Q \K = (a, c] ∪ (d, b].
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„N > 1“: Angenommen die Aussage gilt für ein (N − 1) ∈ N0. Wir schreiben Q :=
Q1×Q2 und K = K1×K2 mit Q1, K1 ∈ Q1 und Q2, K2 ∈ QN−1. Dann ist K1 ⊆ Q1 und
K2 ⊆ Q2 und wir haben die disjunkte Vereinigung

Q \K = [Q1 \K1]× [Q2 \K2] ∪· [Q1 \K1]×K2 ∪· K1 × [Q2 \K2].

Gemäß dem Fall N = 1 können wir Q1 \ K1 = A1 ∪ A2 schreiben mit disjunkten
A1, A2 ∈ Q1. Ferner finden wir nach Induktionsannahme eine Zerlegung

Q2 \K2 = B1 ∪ . . . ∪Bk mit disjunkten Bi ∈ QN−1.

Somit ist
Q \K =

⋃
·

i=1,2
j=1,...,k

Ai ×Bj ∪·
⋃
·

i=1,2

Ai ×K2 ∪·
⋃
·

j=1,...,k

K1 ×Bj.

Korollar 1.4. Seien Q,Q1, . . . , Qn ∈ QN . Dann existieren endliche viele disjunkte
K1, . . . , Km ∈ QN mit Q \ (Q1 ∪ . . . ∪Qn) = K1 ∪· . . . ∪· Km.

Beweis. Wir werden diese Aussage per Induktion zeigen. Für n = 1 ist die Aussage wahr
nach Satz 1.3(b). Sei nun (n− 1) ∈ N derart, dass die Aussage gilt. Dann existieren (nach
Induktionsbehauptung) disjunkte K1, . . . Km1 ∈ QN und (nach Satz 1.3(b)) disjunkte
L1, . . . , Lm2 ∈ QN mit

Q \ (Q1 ∪ . . . ∪Qn−1 ∪Qn) = Q \ (Q1 ∪ . . . ∪Qn−1) ∩Q \Qn

=
(
m1⋃
·
i=1

Ki

)
∩

(
m2⋃
·

j=1

Lj

)
=

⋃
i=1,...,m1
j=1,...,m2

Mij,

mit Mij := Ki ∩ Lj ∈ QN nach Satz 1.3(a), für alle i = 1, . . . ,m1 und j = 1, . . . ,m2.
Schließlich gilt für (i, j) 6= (k, `), i, k = 1, . . . ,m1, j, ` = 1, . . . ,m2

Mij ∩Mk` = (Ki ∩ Lj) ∩ (Kk ∩ L`) = (Ki ∩Kk) ∩ (Lj ∩ L`) = ∅,

da entweder i 6= k und damit Ki ∩Kk = ∅ oder j 6= ` und damit Lj ∩L` = ∅ gilt. Somit
sind die Mij paarweise disjunkt. Es folgt die Behauptung.

Satz 1.5. Seien Qk ∈ QN , k ∈ N disjunkte Quader derart, dass Q :=
⋃
· ∞k=1Qk ebenfalls

in QN liegt. Dann gilt

|Q| =
∞∑
k=1

|Qk| (σ-Additivität des Quadervolumens)

Die Aussage gilt auch für endliche Vereinigungen indem man fast alle Qk als leer annimmt.

Beweis. Aufwändig. Siehe [8].
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Korollar 1.6. Sei Q ∈ QN und seien Q1, . . . , Qk ∈ QN disjunkte, in Q enthaltene
Quader. Dann ist

k∑
n=1

|Qn| ≤ |Q|.

Beweis. Nach Korollar 1.4 ist Q \ (Q1 ∪ . . .∪Qk) = J1 ∪· . . .∪· J` mit disjunkten Quadern
Ji ∈ QN . Dies liefert die disjunkte Vereinigung Q = Q1 ∪· . . .∪· Qk ∪· J1 ∪· . . .∪· J` und mit
Satz 1.5 folgt

|Q| =
k∑
i=1

|Qi|+
∑̀
j=1

|Jj| ≥
k∑
i=1

|Qi|.

Korollar 1.7. Seien Qk ∈ QN , k ∈ N und sei M =
⋃∞
k=1Qk. Dann existieren disjunkte

Quader Jk ∈ QN , k ∈ N mit M =
⋃
· ∞k=1 Jk und

∑∞
k=1|Jk| ≤

∑∞
k=1|Qk|, wobei in dieser

Ungleichung der Wert ∞ zugelassen ist.
Beweis. Nach Korollar 1.4 existiert für jedes k ∈ N eine Zerlegung der Form

Qk \ (Q1 ∪ . . . ∪Qk−1) = Jk1 ∪ . . . ∪ Jk`(k)

in disjunkte Quader Jki, i = 1, . . . , `(k). Somit ist

M =
∞⋃
k=1

Qk \ (Q1 ∪ . . . ∪Qk−1) =
∞⋃
k=1

`(k)⋃
i=1

Jki

und diese Vereinigung ist ebenfalls disjunkt. Weiterhin gilt
∑`(k)

i=1 |Jki| ≤ |Qk| für alle k
nach Korollar 1.6, also

∞∑
k=1

|Qk| ≥
∞∑
k=1

`(k)∑
i=1

|Jki|

Satz 1.8. Jede Offene Menge D ⊆ RN lässt sich als disjunkte Vereinigung abzählbar
vieler Quader aus QN schreiben.
Beweis. Sei Q̃ die Menge der in D enthaltenen Quader (a, b] mit a, b ∈ QN . Diese Menge
ist abzählbar, da Q und somit QN abzählbar ist. Wir behaupten nun

(1.1) D =
⋃
Q∈Q̃

Q

„⊇“ ist trivialerweise erfüllt.
„⊆“: Sei x ∈ D. Da D offen ist, existiert m ∈ N derart, dass y ∈ D für alle y ∈ RN mit
|x− y|∞ < 1

m
. Für i = 1, . . . , N wähle nun yi ∈ Q ∩

[
xi − 1

m
, xi
)
und setze zi := yi + 1

m
.

Dann liegen y = (y1, . . . , yN) und z = (z1, . . . , zn) in QN und es gilt x ∈ (y, z] ⊆ D. Es
folgt (y, z] ∈ Q̃ und somit ist x ∈

⋃
Q∈Q̃Q.

Insgesamt folgt (1.1) und mit Korollar 1.7 erhalten wir schließlich auch eine disjunkte
Zerlegung, wie behauptet.
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1.2 Das äußere Lebesguemaß und Nullmengen
Definition 1.9. Im Folgenden sei R := R ∪ {±∞}.

(a) Wir vereinbaren folgende Rechenregeln in R:

a±∞ = ±∞ ∀a ∈ R
∞+∞ =∞
−∞−∞ = −∞

a · (±∞) =


±∞ für a ∈ (0,∞]
∓∞ für a ∈ [−∞, 0)
0 für a = 0

Nicht definiert ist allerdings ∞−∞!

(b) Wir definieren a <∞ für alle a ∈ R ∪ {−∞} und a > −∞ für alle a ∈ R ∪ {∞}.
Ferner sei |±∞| :=∞.

(c) Für A ⊆ R setzen wir

supA =
{
∞ falls ∞ ∈ A
sup(A ∩ R) falls ∞ /∈ A

inf A =
{
−∞ falls −∞ ∈ A
inf(A ∩ R) falls −∞ /∈ A

(d) Ist (ak)k eine Folge in R so sei

lim inf
k→∞

ak = sup
k∈N

inf
n≥k

an

lim sup
k→∞

ak = inf
k∈N

sup
n≥k

an

Falls diese beiden übereinstimmen, schreiben wir limk→∞ ak für diesen gemeinsamen
Wert.

(e) Ist (ak)k eine Folge in [0,∞] so setzen wir

∞∑
j=1

aj := lim
k→∞

k∑
j=1

aj ∈ [0,∞].

Diese Summe nimmt nach (a) bereits dann den Wert ∞ an, wenn mindestens eines
der ak =∞ ist.

Mit dieser Definition gilt der folgende Satz
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Satz 1.10 (Doppelreihensatz). Sind aij ∈ [0,∞] für i, j ∈ N, so ist

∞∑
j=1

∞∑
i=1

aij =
∞∑
i=1

∞∑
j=1

aij =
∞∑

i,j=1

aij,

wobei die letzte Summe für eine beliebige Abzählung der (i, j) ∈ N× N steht.

Definition 1.11. Für A ⊆ RN sei das äußere Lebesguemaß von A definiert durch

λ∗(A) := inf
{ ∞∑
k=1

|Qk|
∣∣∣∣ Qk ∈ QN für k ∈ N, A ⊆

∞⋃
k=1

Qk

}
∈ [0,∞].

Satz 1.12. Seien A,B,Ak ⊆ RN , k ∈ N. Dann gilt:

(a) λ∗(A) ≥ 0.

(b) λ∗(∅) = 0.

(c) λ∗(A) ≤ λ∗(B), falls A ⊆ B.

(d) λ∗ (
⋃∞
k=1Ak) ≤

∑∞
k=1 λ

∗(Ak).

Beweis. (a): ist klar.
(b): Setze Qk = ∅ ∈ QN für k ∈ N, dann ist ∅ ⊆

⋃∞
k=1Qk und

∑∞
k=1|Qk| = |∅| = 0.

Es folgt λ∗(∅) = 0.
(c): Sind Qk ∈ QN für k ∈ N mit B ⊆

⋃∞
k=1Qk, so gilt auch A ⊆ B ⊆

⋃∞
k=1Qk. Daher

folgt λ∗(A) ≤ λ∗(B) bereits nach Definition von λ∗.
(d): Sei ε > 0. Nach Definition von λ∗(Ak) existieren Qkj ∈ QN , j ∈ N mit

Ak ⊆
∞⋃
j=1

Qkj und
∞∑
j=1

|Qkj| ≤ λ∗(Ak) + ε

2k für alle k ∈ N.

Da die Qkj, k, j ∈ N wieder eine abzählbare Menge von Quadern bilden und
⋃∞
k=1Ak ⊆⋃∞

j,k=1Qkj ist, folgt

λ∗

(
∞⋃
k=1

Ak

)
≤

∞∑
j,k=1

|Qkj|
Satz 1.10=

∞∑
k=1

∞∑
j=1

|Qkj| ≤
∞∑
k=1

(
λ∗(Ak) + ε

2k
)

=
∞∑
k=1

λ∗(Ak) + ε
∞∑
k=1

2−k =
∞∑
k=1

λ∗(Ak) + ε.

Nun war ε > 0 beliebig gewählt, also folgt (d).

Satz 1.13. Für Q ∈ QN gilt λ∗(Q) = |Q|.
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Beweis. Nach Definition von λ∗ gilt

(1.2) λ∗(Q) ≤ |Q| (setze Q1 = Q und Qk = ∅ für k = 2, 3, . . .)

Sei nun Qk ∈ QN , k ∈ N beliebig mit Q ⊆
⋃
kQk und sei Q̃k := Qk ∩ Q für k ∈ N.

Dann gilt Q =
⋃∞
k=1 Q̃k und |Q̃k| ≤ |Qk| für alle k. Nach Korollar 1.7 existieren disjunkte

Mk ∈ QN mit

Q =
∞⋃
·

k=1

Mk und
∞∑
k=1

|Mk| ≤
∞∑
k=1

|Q̃k|.

Mit Satz 1.5 ergibt sich also

|Q| =
∞∑
k=1

|Mk| ≤
∞∑
k=1

|Q̃k| ≤
∞∑
k=1

|Qk|.

Nach Definition von λ∗ folgt demnach |Q| ≤ λ∗(Q). Mit (1.2) folgt die Behauptung.

Definition 1.14. Eine Menge A ⊆ RN heißt (N -dimensionale) Nullmenge, falls λ∗(A) =
0 ist. Dies gilt genau dann, wenn für alle ε > 0 Quader Qk ∈ QN , k ∈ N existieren mit
A ⊆

⋃
kQk und

∑
k|Qk| < ε.

Satz 1.15.

(a) Ist A ⊆ RN eine Nullmenge und B ⊆ A, so ist auch B eine Nullmenge.

(b) Sind Ak, k ∈ N Nullmengen im RN , so ist auch
⋃
k∈NAk eine Nullmenge.

Beweis. (a) folgt aus Satz 1.12(c), und (b) folgt aus Satz 1.12(d).

Beispiel 1.16. (a) Für alle x ∈ RN ist {x} ⊆ RN eine Nullmenge, denn für alle ε > 0
gilt

{x} ⊆ (x1 − ε, x1]× . . .× (xN − ε, xN ] =: Qε ∈ QN .

Nun gilt |Qε| = εN → 0 für ε→ 0 und damit ist {x} eine Nullmenge.

(b) Jede abzählbare Teilmenge des RN ist eine Nullmenge nach (a) und Satz 1.15(b).
Insbesondere ist QN eine Nullmenge in RN .

(c) RN−1 × {0} ⊆ RN ist eine Nullmenge, denn:

RN−1 × {0} =
∞⋃
k=1

(Ik × {0}) mit Ik := (−k, k]× . . .× (−k, k] ∈ QN−1,

wobei
λ∗(Ik × {0}) ≤ inf

ε>0
|Ik × (−ε, 0]| = inf

ε>0
(2k)N−1ε = 0

für alle k gilt und somit Ik × {0} eine Nullmenge ist. Satz 1.15(b) liefert dann die
Behauptung.
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Ein Würfel ist ein Quader, dessen Seiten alle gleich lang sind.

Lemma 1.17. Ist Q ∈ QN , so existieren endlich viele Würfel W1, . . . ,Wk ∈ QN mit

Q ⊆
k⋃
i=1

Wi und |Q| ≤
k∑
i=1

|Wi| ≤ 2N |Q|.

Beweis. Einfache Übung.

Definition 1.18. Für eine Menge A ⊆ RN setzen wir diam(A) := sup{|x−y|2 | x, y ∈ A}
für den Durchmesser der Menge A.

Satz 1.19. Sei A ⊆ RN .

(a) A ist genau dann eine Nullmenge, wenn für alle ε > 0 Mengen Ak ⊆ RN , k ∈ N
existieren mit A ⊆

⋃∞
k=1Ak und

∑∞
k=1(diamAk)N < ε.

(b) Ist A eine Nullmenge und f : A→ RN Lipschitzstetig, so ist auch f(A) ⊆ RN eine
Nullmenge.

Beweis. (a): „⇒“: Sei A eine Nullmenge, so existieren (nach Definition) zu jedem ε > 0
Quader Qk ∈ QN , k ∈ N mit A ⊆

⋃∞
k=1Qk und

∑∞
k=1|Qk| < ε

2NNN/2 . Mit Lemma 1.17
folgt, dass es für jedes k endlich viele WürfelW1, . . . ,Wn(k) ∈ QN gibt mit Qk ⊆

⋃n(k)
i=1 Wki

und
∑n(k)

i=1 |Wki| ≤ 2N |Qk|. Wegen |Wki| = N−N/2(diamWki)N folgt

ε > NN/22N
∞∑
k=1

|Qk| ≥ NN/2
∞∑
k=1

n(k)∑
j=1

|Wkj| =
∞∑
k=1

n(k)∑
i=1

(diamWki)N =
∞∑
k=1

(diamAk)N ,

wo wir eine Abzählung der Wki als Ak mit nur einem Index schreiben.
„⇐“: Seien ε > 0 und Ak ⊆ RN , k ∈ N mit A ⊆

⋃∞
k=1Ak und

∑∞
k=1(diamAk)N < ε.

Bezeichne mit Ãk einen Würfel mit Kantenlänge diamAk, so dass Ak ⊆ Ãk gilt. Dann ist

|Ak| ≤ |Ãk| = (diamAk)N .

Da nun ebenfalls A ⊆
⋃∞
k=1 Ãk gilt, folgt

λ∗(A) ≤
∞∑
k=1

|Ãk| =
∞∑
k=1

(diamAk)N < ε.

Weil ε beliebig gewählt war, ist A eine Nullmenge.
(b): Übung.

Bemerkung 1.20. (a) Betrachte f : RN → RN affin linear, d.h. f(x) = Tx + c mit
T ∈ RN×N , c ∈ RN , so ist f Lipschitzstetig (siehe Mathe II) und bildet damit
Nullmengen auf Nullmengen ab. Mit Beispiel 1.16(c) folgt direkt, dass x0 + V eine
Nullmenge ist für jeden Untervektorraum V ⊆ RN mit dim(V ) < N und jedes
x0 ∈ RN , da x0 + V ⊆ f(RN−1 × {0}) für eine geeignet gewählte affin lineare
Abbildung f ist.
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(b) Ist D ⊆ RN offen, f ∈ C1(D,RN) und A ⊆ D eine Nullmenge, so ist auch f(A) ⊆
RN eine Nullmenge. Dies lässt sich wie folgt begründen: Zunächst beobachten
wir, dass für jede kompakte Menge K ⊆ D gilt, dass f eingeschränkt auf K
Lipschitzstetig ist. Demnach ist f(K ∩ A) eine Nullmenge, da A ∩ K ⊆ A eine
Nullmenge ist. Nun lässt sich D durch abzählbar viele kompakte Mengen in D
überdecken und dies liefert die Behauptung.

(c) Sei D ⊆ Rk offen, N > k und f ∈ C1(D,RN−k), dann ist Graph f ⊆ RN eine
Nullmenge. Dies folgt mit Aussage (b) unter Verwendung der Abbildung f̃ ∈
C1(D × RN−k,RN) definiert durch f̃(x, y) = (x, f(x)). Dann ist D × {0N−k} eine
Nullmenge und also auch Graph f = f̃(D × {0N−k}). Man kann sogar zeigen, dass
der Graph einer Funktion bereits dann eine Nullmenge ist, wenn f nur stetig ist.

(d) Mit Hilfe von (a) und (c) lässt sich zeigen, dass jede k-dimensionale Untermannigfal-
tigkeit des RN , k < N , eine Nullmenge ist, da diese sich lokal als affin lineares Bild
eines Graphen darstellen lässt. Man muss dann nur zeigen, dass jede Überdeckung
der Untermannigfaltigkeit mit solchen Graphendarstellungen eine abzählbare Teil-
überdeckung besitzt. Dies ist eine wichtige Bemerkung bei der Konstruktion von
sogenannten „Oberflächenintegralen“.

1.3 Messbarkeit und Lebesguemaß
Bemerkung 1.21. Wir haben im vorherigen Abschnitt das äußere Lebesguemaß ken-
nengelernt. Um diesen Wert als ein Volumen zu interpretieren, sollte gelten: Sind A, B
disjunkt, dann ist vol(A ∪· B) = vol(A) + vol(B). Für das äußere Lebesguemaß gibt es
jedoch disjunkte Mengen A,B ⊆ RN mit λ∗(A ∪· B) < λ∗(A) + λ∗(B). Solche Mengen
lassen sich jedoch nur mit dem Auswahlaxiom der Mengenlehre konstruieren. Im Folgen-
den wollen wir uns also auf eine KlasseMN von Teilmengen des RN beschränken für die
stets gilt: Sind Ak ∈MN , k ∈ N, disjunkt, dann ist λ∗

(⋃
· k∈NAk

)
=
∑∞

k=1 λ
∗(Ak).

Definition 1.22. Eine Teilmenge A ⊆ RN heißt Lebesgue-messbar, falls für alle Teil-
mengen Z ⊆ RN gilt:

λ∗(Z) = λ∗(Z ∩ A) + λ∗(Z \ A).

Die Klasse der Lebesgue-messbaren Teilmengen des RN bezeichnen wir mitMN .

Bemerkung 1.23. Für alle Teilmengen A,Z ⊆ RN gilt λ∗(Z) ≤ λ∗(Z ∩A) + λ∗(Z \A)
nach Satz 1.12(d).

Satz 1.24. Sei A ⊆ RN . Dann gilt:

(a) A Nullmenge ⇒ A ∈MN , d.h. A ist Lebesgue-messbar.

(b) A ∈ QN ⇒ A ∈MN .

10



Beweis. (a): Sei A eine Nullmenge und Z ⊆ RN . Dann ist

λ∗(Z)
Satz 1.12(c)
≥ λ∗(Z \ A) = λ∗(Z ∩ A)︸ ︷︷ ︸

=0

+λ∗(Z \ A).

Nach Bemerkung 1.23 folgt die Gleichheit.
(b): Sei A ∈ QN und Z ⊆ RN . Wegen Bemerkung 1.23 genügt es

(1.3) λ∗(Z ∩ A) + λ∗(Z \ A) ≤ λ∗(Z)

zu zeigen. Sei dazu ε > 0 und seien Qk ∈ QN , k ∈ N mit Z ⊆
⋃
k∈NQk und

∑
k∈N|Qk| ≤

λ∗(Z) + ε. Nach Satz 1.3(b) ist Qk \ A =
⋃
· l(k)
i=1 Jki mit disjunkten Jki ∈ QN . Somit ist

Z ∩ A ⊆
⋃
k∈N(Qk ∩ A) und Z \ A ⊆

⋃
k∈N
⋃
· l(k)
i=1 Jki, also

λ∗(Z ∩ A) + λ∗(Z \ A) ≤
∑
k∈N

|Qk ∩ A|+
l(k)∑
i=1

|Jki|

 Satz 1.5=
∑
k∈N

|Qk| ≤ λ∗(Z) + ε.

Da ε beliebig gewählt war, folgt (1.3).

Definition 1.25. Seien Ω eine beliebige Menge und P(Ω) die Potenzmenge von Ω (das
System aller Teilmengen von Ω).

(a) Ein SystemM⊆ P(Ω) von Teilmengen von Ω heißt σ-Algebra auf Ω, wenn gilt:
(i) ∅ ∈M,
(ii) A ∈M⇒ Ac := Ω \ A ∈M,
(iii) Ak ∈M, k ∈ N⇒

⋃∞
k=1Ak ∈M.

Das Paar (Ω,M) nennt man dann Messraum oder messbarer Raum, und die
Elemente vonM heißen messbare Mengen.

(b) Eine Abbildung µ : M→ [0,∞] auf einer σ-AlgebraM heißt (positives) Maß, wenn
gilt:
(i) µ(∅) = 0,
(ii) Sind Ak ∈M, k ∈ N disjunkt, so gilt

µ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak) (σ-Additivität).

Das Tripel (Ω,M, µ) nennt man dann Maßraum.

Hauptsatz 1.26. Das SystemMN der Lebesgue-messbaren Teilmengen des RN bildet
eine σ-Algebra auf RN . Die Einschränkung λN : MN → R∪{∞} der Mengenfunktion λ∗
ist ein Maß.MN wird auch als die Lebesguesche σ-Algebra bezeichnet (andere Schreib-
weise:M(RN )) und λN heißt (N -dimensionales) Lebesguemaß. Wenn die Dimension N
klar ist, schreiben wir manchmal auch λ statt λN .
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Beweis. Wir zeigen die geforderten Eigenschaften aus Definition 1.25.
(a)(i): Es ist ∅ ∈MN , da λ∗(Z) = λ∗(∅) + λ∗(Z) = λ∗(Z ∩∅) + λ∗(Z \∅) für alle

Z ∈ P(RN) gilt.
(ii): Sei A ∈ MN . Dann ist auch das Komplement Ac := RN \ A ∈ MN , denn für

beliebiges Z ⊆ RN gilt

λ∗(Z) = λ∗(Z ∩ A) + λ∗(Z \ A) = λ∗(Z \ Ac) + λ∗(Z ∩ Ac).

(iii): Behauptung 1: Sind A,B ∈MN , so ist auch A∩B ∈MN . Sei dazu Z ∈ P(RN )
beliebig. Wegen A ∈MN und B ∈MN ist

λ∗(Z) = λ∗(Z ∩ A) + λ∗(Z \ A) = λ∗(Z ∩ A ∩B) + λ∗((Z ∩ A) \B) + λ∗(Z \ A)
≥ λ∗(Z ∩ A ∩B) + λ∗(Z \ (A ∩B)),

wegen

Z r A ∪ (Z ∩ A) rB = Z ∩ (Ac ∪ (A ∩Bc)) = Z ∩ (Ac ∪ (Bc r Ac))
= Z ∩ (Ac ∪Bc) = Z r (A ∩B)

und der Eigenschaft Satz 1.12(d) von λ∗. „≤“ gilt sowieso, also folgt A ∩B ∈MN . Aus
(ii) und Behauptung 1 folgt
Behauptung 2: Sind A,B ∈ MN , so auch A ∪ B = RN \ (Ac ∩ Bc). Sind ferner A

und B disjunkt, so gilt

λ∗(Z ∩ (A ∪B)) = λ∗(Z ∩ A) + λ∗(Z ∩B) für alle Z ∈ P(RN).
Letztere Gleichheit folgt, da mit Z ′ := Z ∩ (A ∪ B) entsprechend der Definition der
Messbarkeit von A und B ⊆ Ac folgt:

λ∗(Z ′) = λ∗(Z ′ ∩ A) + λ∗(Z ′ \ A) = λ∗(Z ∩ A) + λ∗(Z ∩B).

Behauptung 3: Sind Ak ∈MN , k ∈ N disjunkt, so ist A :=
⋃
k∈NAk ∈MN , und es

gilt

(1.4) λ∗(Z ∩ A) =
∞∑
k=1

λ∗(Z ∩ Ak) für alle Z ∈ P(RN).

Dies sieht man so: Wegen Behauptung 2 ist λ∗
(
Z ∩

⋃m
k=1Ak

)
=
∑m

k=1 λ
∗(Z ∩ Ak). Mit

der Monotonie von λ∗ folgt

λ∗(Z) = λ∗
(
Z ∩

m⋃
k=1

Ak

)
+ λ∗

(
Z \

m⋃
k=1

Ak

)
≥

m∑
k=1

λ∗(Z ∩ Ak) + λ∗(Z \ A) für m ∈ N.

Durch Grenzübergang m→∞ erhalten wir

λ∗(Z) ≥
∞∑
k=1

λ∗(Z ∩ Ak) + λ∗(Z \ A) ≥ λ∗(Z ∩ A) + λ∗(Z \ A) ≥ λ∗(Z)

mit Hilfe von Satz 1.12(d). Also gilt überall Gleichheit, und dies zeigt Behauptung 3.
(b)(ii): Folgt aus (1.4) mit Z = RN . Die anderen Maßeigenschaften sind für λ∗|MN

trivialerweise erfüllt.
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Korollar 1.27. Jede offene und jede abgeschlossene Teilmenge von RN ist messbar.

Beweis. Ist A ⊆ RN offen, so ist A =
⋃∞
k=1 Qk mit Quadern Qk ∈ QN , k ∈ N nach

Satz 1.8. Dabei ist Qk ∈MN für alle k nach Satz 1.24. Mit Definition 1.25(a)(iii) folgt
A ∈MN .

Mit Definition 1.25(a)(ii) folgt schließlich, dass auch abgeschlossene Teilmengen messbar
sind.

Korollar 1.28. Seien A,B,Ak ∈MN , k ∈ N. Dann gilt:

(a) Die Mengen A ∩B, A \B und
⋂
k∈NAk sind messbar.

(b) Ist B ⊆ A und λ(B) <∞, so gilt

λ(A \B) = λ(A)− λ(B).

(c) Gilt Ak ⊆ Ak+1 für alle k ∈ N, so ist

λ

(⋃
k∈N

Ak

)
= lim

k→∞
λ(Ak).

(d) Gilt λ(A1) <∞ und Ak+1 ⊆ Ak für alle k ∈ N so ist

λ

(⋂
k∈N

Ak

)
= lim

k→∞
λ(Ak).

Beweis. Übung.

Bemerkung 1.29. Ist a, b ∈ R, a < b, so sind [a, b], (a, b], [a, b), (a, b) ∈ MN . Ferner
sind {a} und {b} Nullmengen. Es folgt

λ([a, b]) = λ((a, b]) = λ([a, b)) = λ((a, b)) = b− a.

Analog gilt: Sind a, b ∈ RN , so sind {a} und {b} Nullmengen und es ist λ((a, b]) = |(a, b]|.

Proposition 1.30. Ist I eine Indexmenge undMi, i ∈ I eine Familie von σ-Algebren
auf Ω, so ist auch

M :=
⋂
i∈I

Mi

eine σ-Algebra.

Beweis. Übung.
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Definition 1.31. Sei O das System der offenen Teilmengen von RN . Nach Propositi-
on 1.30 ist dann

BN :=
⋂

M σ-Algebra auf RN
O⊆M

M

eine σ-Algebra auf RN , die kleinste, die alle offenen und somit auch alle abgeschlossenen
Teilmengen von RN enthält. Diese heißt die Borelsche σ-Algebra auf RN , und ihre
Elemente heißen Borel-messbare Teilmengen von RN .

Bemerkung 1.32. Es gilt BN ⊆MN , wegen Korollar 1.27. Man kann zeigen, dass diese
Inklusion strikt ist, dass also nicht alle Lebesgue-messbaren Mengen Borel-messbar sind.
Im Folgenden werden wir jedoch nur Lebesgue-Messbarkeit betrachten und deshalb statt
„Lebesgue-messbar“ einfach „messbar“ sagen.

1.4 Messbare Funktionen und Elementarfunktionen
Definition 1.33. Sei B ∈MN und f : B → R eine Funktion.

(a) Für c ∈ R definieren wir

{f > c} := {x ∈ B | f(x) > c} ⊆ B.

Analog „≥,=,≤, <“. Insbesondere ist dann {f = c} = f−1(c).

(b) f heißt messbar, falls eine der folgenden äquivalenten Bedingungen gilt:
(i) {f > c} ∈ MN für alle c ∈ R
(ii) {f ≤ c} ∈ MN für alle c ∈ R
(iii) {f < c} ∈ MN für alle c ∈ R
(iv) {f ≥ c} ∈ MN für alle c ∈ R

Beweis der Äquivalenz. „(i)⇒ (ii)“: Für c ∈ R ist {f ≤ c} = B \ {f > c} ∈ MN nach
Korollar 1.28(a).
„(ii) ⇒ (iii)“: Sei c ∈ R. Ist c = −∞, so ist {f < c} = ∅ ∈ MN . Ist ferner c > −∞

und (ck)k ⊆ R eine Folge mit ck ≤ ck+1 < c für alle k und limk→∞ ck = c, so ist
{f < c} =

⋃
k{f ≤ ck} ∈ MN nach Definition 1.25(a)(iii)

„(iii)⇒ (iv)“ und „(iv)⇒ (i)“ beweist man analog.

Bemerkung 1.34. Sei B ∈MN und f : B → R.

(a) Ist f messbar, so ist {f = c} = {f ≥ c} ∩ {f ≤ c} ∈ MN nach Korollar 1.28(a)
für alle c ∈ R.
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(b) Definiert man die triviale Fortsetzung f̄ von f durch

f : RN → R, f(x) =
{
f(x), x ∈ B
0, sonst,

so gilt: f messbar ⇔ f messbar. Dies folgt da für c ∈ R gilt:

{f > c} = {f > c}, falls c ≥ 0
{f > c} = {f > c} ∩B und {f > c} = {f > c} ∪ (RN \B), falls c < 0.

Lemma 1.35. Es sei B ⊆ R ein Intervall, f : B → R. Dann gilt

(a) Ist f monoton wachsend, d.h. für x, y ∈ B, x ≤ y folgt f(x) ≤ f(y), dann ist f
messbar.

(b) Ist f monoton fallend, d.h. für x, y ∈ B, x ≤ y folgt f(x) ≥ f(y), dann ist f
messbar.

Beweis. Da Intervalle als eindimensionale Quader aufgefasst werden können ist B messbar.
Es genügt dann zu erkennen, dass für c ∈ R die Menge {f > c} für f monoton fallend
bzw. {f < c} für f monoton wachsend messbar sind (Übung).

Satz 1.36. Ist B ⊆ RN messbar und f : B → R stetig, so ist f messbar.

Beweis. Sei c ∈ R. Aufgrund der Stetigkeit von f ist {f > c} offen in B, d.h. es existiert
eine offene Teilmenge C ⊆ RN mit {f > c} = B ∩ C. Da B,C ∈ MN gilt, folgt
{f > c} ∈ MN .

Satz 1.37. Seien B ∈MN , α ∈ R und seien f, g : B → R messbar. Dann gilt

(a) αf : B → R ist messbar.

(b) Ist {f = ∞} ∩ {g = −∞} = ∅ = {f = −∞} ∩ {g = ∞}, so ist f + g : B → R
wohldefiniert und messbar.

Beweis. Übung.

Satz 1.38. Sei B ∈MN und seien fk : B → R, k ∈ N messbare Funktionen. Dann gilt:

(a) Die auf B punktweise definierten Funktionen f := infk fk und F := supk fk sind
messbar. Daraus folgt dann direkt die Messbarkeit von min fk und max fk bei endlich
vielen Funktionen.

(b) Die auf B punktweise definierten Funktionen g := lim infk fk und G := lim supk fk
sind messbar.
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Beweis. (a): Für alle c ∈ R ist

{f ≥ c} =
⋂
k

{fk ≥ c}︸ ︷︷ ︸
∈MN

∈MN

und {F ≤ c} =
⋂
k{fk ≤ c} ∈ MN .

(b): Nach (a) ist gk := inf l≥k fl messbar für alle k ∈ N und damit auch g = supk∈N gk.
Ähnlich folgt die Messbarkeit von G.

Korollar 1.39. Sei B ∈MN und f : B → R messbar. Dann sind auch f+ := max{f, 0},
f− := −min{f, 0} und |f | = f+ + f− messbar.

Beweis. Dies folgt direkt aus Satz 1.38(a) und Satz 1.37(b).

Bemerkung 1.40. Ist B ∈MN und fk := B → R eine monotone Funktionenfolge, d.h.
fk(x) ≤ fk+1(x) für alle x ∈ B ((fk)k ist monoton wachsend, fk ↗) oder fk(x) ≥ fk+1(x)
für alle x ∈ B ((fk)k ist monoton fallend, fk ↘), so existiert der punktweise Grenzwert
f(x) := limk→∞ fk(x) für alle x ∈ B: Ohne Einschränkungen können wir annehmen,
dass (fk)k monoton wächst. Ist die Folge (fk(x))k nach oben beschränkt, so existiert
der Grenzwert limk→∞ fk(x) =: f(x)1. Ist (fk(x))k nicht nach oben beschränkt, so
ist wegen der Monotonie limk→∞ fk(x) = ∞ ∈ R. Folglich existiert eine punktweise
Grenzwertfunktion f : B → R. Nach Satz 1.38(b) folgt, dass f messbar ist.

Definition 1.41. Sei B ⊆ RN und sei A eine Aussage über die Punkte aus B. Wir sagen
„A gilt fast überall (kurz: f.ü.) auf B“, wenn es eine Nullmenge M ⊆ B derart gibt, dass
A für alle x ∈ B \M gilt. Ist B aus dem Zusammenhang bekannt, so sagen wir kurz: „A
gilt f.ü.“ (üblich ist auch die Schreibweise „A gilt λ-f.ü.“).

Satz 1.42. Sei B ∈ MN und seien f, g : B → R. Ist f messbar und f = g f.ü. auf B,
so ist auch g messbar.

Beweis. Sei M ⊆ B eine Nullmenge mit f = g auf B \M , und sei c ∈ R beliebig. Dann
ist

{g > c} =

{f > c}︸ ︷︷ ︸
∈MN

\M

 ∪ ({g > c} ∩M)︸ ︷︷ ︸
∈MN , da Nullmenge

∈MN .

Korollar 1.43. Seien B ∈ MN und f : B → R und seien fk : B → R, k ∈ N messbar
mit fk → f punktweise f.ü. auf B. Dann ist auch f messbar.

Beweis. Sei M ⊆ B eine Nullmenge, so dass g := limk→∞ fk auf B rM existiert. Nach
Satz 1.38(b) ist g dann messbar auf B rM , und die triviale Fortsetzung ḡ ist messbar
auf RN , nach Bemerkung 1.34(b). Es ist einfach zu sehen, dass dann auch ḡ|B messbar
ist, und wegen ḡ|B = f f.ü. liefert Satz 1.42 die Behauptung.

1Satz von Bolzano-Weierstraß: Jede monoton steigende, nach oben beschränkte Folge in R hat einen
Grenzwert
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Definition 1.44. (a) Für A ⊆ RN heißt

1A := RN → R, 1A(x) =
{

1, x ∈ A
0, x /∈ A

Indikatorfunktion (oder charakteristische Funktion) von A. Offensichtlich ist 1A
genau dann messbar, wenn die Menge A messbar ist.

(b) Sei B ∈ RN messbar. Eine messbare Funktion f : B → R heißt Elementarfunktion,
wenn sie nur endlich viele Werte annimmt und die Menge {x ∈ B | f(x) 6= 0}
beschränkt ist. Wir setzen E(B) := {f : B → R | f Elementarfunktion}.

Bemerkung 1.45.

(a) Speziell: Die sogenannte Dirichletfunktion ist gegeben durch die Indikatorfunktion
der Menge Q, 1Q. Diese ist nicht Riemann-integrierbar. Es gilt jedoch 1Q = 0 f.ü.,
da Q ⊆ R eine eindimensionale Nullmenge ist.

(b) Ist B ∈ MN und f ∈ E(B), so ist f =
∑

y∈f(B) y1{f=y} und dies ist eine endliche
Summe. Insbesondere existieren für jedes f ∈ E(B) endlich viele messbare Mengen
A1, . . . , An ⊆ B und α1, . . . , αn ∈ R mit

λ(Ai) <∞ für i = 1, . . . , n, und f =
n∑
i=1

αi1Ai .

Umgekehrt sind Linearkombinationen von Indikatorfunktionen beschränkter messba-
rer Mengen immer Elementarfunktionen.

Satz 1.46. Seien B ∈MN , α ∈ R und seien f, g, f1, . . . , fn ∈ E(B). Dann gilt:

(a) αf , f + g ∈ E(B). Insbesondere ist E(B) ein R-Vektorraum.

(b) mini=1,...,n fi, maxi=1,...,n fi ∈ E(B).

Beweis. Folgt aus Bemerkung 1.45 und Satz 1.38(a).

Satz 1.47. Seien B ∈MN und f : B → R messbar. Dann existiert eine Folge (fk)k ⊆
E(B) von Elementarfunktionen mit

|fk| ≤ |f | für alle k und lim
k→∞

fk(x) = f(x) für alle x ∈ B.

Ist f nichtnegativ, d.h. f(B) ⊆ [0,∞], so kann man eine solche Folge finden, welche
zusätzlich

0 ≤ fk(x) ≤ fk+1(x) ≤ f(x) für alle x ∈ B, k ∈ N

erfüllt.
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Beweis. 1. Spezialfall: f nichtnegativ. Definiere dann fk : B → R für k ∈ N durch

fk(x) :=
{

(m− 1)2−k, falls (m− 1)2−k ≤ f(x) < m2−k für ein m ∈ N, m ≤ k2k gilt;
k, falls f(x) ≥ k gilt.

Die so definierte Folge von Stufenfunktionen hat die gewünschten Eigenschaften.
2. Allg. Fall: Sei f eine beliebige messbare Funktion B → R. Dann sind auch

f+, f− : B → [0,∞] messbar nach Korollar 1.39. Wir wählen (f 1
k )k bzw. (f 2

k )k zu f+

bzw. f− wie im Spezialfall und setzen fk := f 1
k − f 2

k . Dann gilt limk→∞ fk(x) = f+(x)−
f−(x) = f(x) für alle x ∈ B und |fk| ≤ |f 1

k |+ |f 2
k | ≤ f+ + f− = |f | für alle k ∈ N.

1.5 Integration nichtnegativer messbarer Funktionen
Satz 1.48 (Produktsatz). Seien k,m ∈ N, N = k +m, A ∈ Mk und B ∈ Mm. Dann
gilt: A×B ∈MN und

(1.5) λN(A×B) = λk(A) · λm(B).

Nicht für die Lösung von Blatt 3 verwenden!

Beweis. Siehe [4, Kap. IX.5, Aufg. 1].

Definition 1.49. Für f : RN → [0,∞] definieren wir den Subgraphen U(f) := {(x, y) ∈
RN × R | 0 < y < f(x)} ⊆ RN+1.

Satz 1.50. Sei f : RN → [0,∞] eine beliebige Abbildung.

(a) Ist f messbar, so ist U(f) ∈MN+1.

(b) Sind fk : RN → [0,∞], k ∈ N messbare Funktionen mit fk ≤ fk+1 für alle k und
limk→∞ fk = f punktweise, so gilt

(1.6) λN+1(U(f)) = lim
k→∞

λN+1(U(fk)).

(c) Ist f ∈ E(RN), so gilt

λN+1(U(f)) =
∑

y∈f(RN )

y · λN({f = y}).

Beweis. Sei zunächst f ∈ E(RN). Dann ist f(RN) endlich und

U(f) =
⋃
·

y∈f(RN )

{f = y}︸ ︷︷ ︸
∈MN

×(0, y).
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Nach Hauptsatz 1.26 und Satz 1.48 ist also U(f) ∈MN+1 mit

λN+1(U(f)) =
∑

y∈f(RN )

λN({f = y}) · λ1((0, y)) =
∑

y∈f(RN )

y · λN({f = y}).

Insbesondere folgt (c).
Seien nun fk, k ∈ N Funktionen wie in (b). Dann ist f messbar nach Korollar 1.43.

Wir zeigen nun

(1.7) Ist U(fk) messbar für alle k, so auch U(f) und (1.6) gilt.

Es gilt
U(fk) ⊆ U(fk+1) für alle k und U(f) =

⋃
k

U(fk).

Mit Korollar 1.28 folgt
λN+1(U(f)) = lim

k→∞
λN+1(U(fk)).

Es folgt (1.7). Wir beweisen nun (a): Ist f messbar, so existiert nach Satz 1.47 eine Folge
von Funktionen fk ∈ E(RN), welche die Voraussetzungen von (b) erfüllt. Gemäß (c) ist
dabei U(fk) messbar für alle k und mit (1.7) folgt die Messbarkeit von U(f). Es folgt
somit (a) und (b) folgt dann aus (a) mit (1.7).

Definition 1.51. Für eine messbare Funktion f : RN → [0,∞] definieren wir das
(Lebesgue-)Integral durch ∫

f := λN+1(U(f)) ∈ [0,∞].

Bemerkung 1.52. Aus Satz 1.50(c) folgt insbesondere

(1.8) λN(A) =
∫

1A

für jede messbare Menge A ⊆ RN .

Satz 1.53 (Satz von der aufsteigenden monotonen Konvergenz). Seien fk : RN → [0,∞],
k ∈ N, messbare Funktionen, mit fk ≤ fk+1 für alle k und sei f := limk→∞ fk. Dann gilt∫
f = limk→∞

∫
fk.

Beweis. Dies folgt direkt aus Satz 1.50(b) und Definition 1.51.

Satz 1.54. Seien f, g : RN → [0,∞] messbar und α > 0. Dann gilt:

(a) Ist f ≤ g f.ü., so ist
∫
f ≤

∫
g.

(b) Ist f = g f.ü., so ist
∫
f =

∫
g.

(c)
∫
αf = α

∫
f und

∫
(f + g) =

∫
f +

∫
g.
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(d) Ist
∫
f = 0, so ist f = 0 f.ü.

(e) Ist
∫
f <∞, so ist f <∞ f.ü.

Beweis. (a): Beachte: Ist f ≤ g f.ü., so existiert eine NullmengeM ⊆ RN mit f(x) ≤ g(x)
für alle x ∈ RN rM . Dann ist M × R eine (N + 1)-dimensionale Nullmenge (siehe
Übungsblatt 3) und es folgt U(f) \ (M × R) ⊆ U(g) \ (M × R). Dies liefert∫

f = λN+1(U(f)) = λN+1(U(f) \ (M × R)
)

≤ λN+1(U(g) \ (M × R)
)

= λN+1(U(g)) =
∫
g.

(b): Folgt aus (a).
(c): Seien zunächst f, g ∈ E(RN). Mit F := f + αg ∈ E(RN) gilt dann nach Satz 1.50∫
F =

∑
w∈F (RN )

wλN({F = w}) =
∑

y∈f(RN )

yλN({f = y}) +
∑

z∈α·g(RN )

zλN({α · g = z})

=
∑

y∈f(RN )

yλN({f = y}) +
∑

x∈g(RN )

αxλN({g = x}) =
∫
f + α

∫
g.

Für den allgemeinen Fall seien f, g : RN → [0,∞] messbar. Nach Satz 1.47 existieren
dann fk, gk ∈ E(RN) mit 0 ≤ fk ≤ fk+1, 0 ≤ gk ≤ gk+1 für alle k und limk→∞ fk = f
sowie limk→∞ gk = g. Es folgt dann∫

(f + αg) Satz 1.53= lim
k→∞

∫
(fk + αgk) = lim

k→∞

∫
fk + α lim

k→∞

∫
gk

Satz 1.53=
∫
f + α

∫
g.

(d): Sei Ak :=
{
f ≥ 1

k

}
für k ∈ N. Dann ist 1

k
1Ak ≤ f und somit nach (a): 1

k
λN (Ak) =∫ 1

k
1Ak ≤

∫
f = 0 für alle k. Es folgt, dass {f > 0} =

⋃
k∈NAk eine Nullmenge ist.

(e): Sei A := {f =∞}. Dann ist k · 1A ≤ f und somit kλN (A) ≤
∫
f nach (a) für alle

k ∈ N. Es folgt, da k beliebig gewählt ist und
∫
f <∞ gilt, dass λ(A) = 0 gilt.

Satz 1.55. Seien fk : RN → [0,∞], k ∈ N messbar.

(a) Für f =
∑∞

k=1 fk gilt
∫
f =

∑∞
k=1
∫
fk (Satz von Beppo Levi)

(b) Ist
∫
f1 <∞ und fk+1 ≤ fk für alle k, so gilt∫

lim
k→∞

fk = lim
k→∞

∫
fk (Satz von der absteigenden monotonen Konvergenz)

Beweis. (a): Sei gk :=
∑k

j=1 fj, dann ist 0 ≤ gk ≤ gk+1 für alle k ∈ N. Mit Satz 1.53
folgt ∫

f =
∫

lim
k→∞

gk = lim
k→∞

∫
gk

Satz 1.54(c)= lim
k→∞

k∑
j=1

∫
fj =

∞∑
k=1

∫
fk.
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(b): Wegen
∫
f1 <∞ und weil fk ↘ f gilt, können wir nach Satz 1.54(e) annehmen,

dass fk(x) < ∞ für alle x und k gilt. Dazu setzen wir jeweils fk(x) := 0 für x in der
Nullmenge {f1 =∞}. Die Werte der unten betrachteten Integrale verändert dies nicht,
laut Satz 1.54(b). So können wir f := limk→∞ fk und gk := f1 − fk definieren. Dann
ist wiederum 0 ≤ gk ≤ gk+1 für alle k ∈ N und mit Satz 1.53 folgt limk→∞

∫
gk =∫

limk→∞ gk =
∫

(f1 − f). Mit Satz 1.54(c) erhalten wir∫
(f1 − f) +

∫
f =

∫
f1 =

∫
gk +

∫
fk

k→∞−→
∫

(f1 − f) + lim
k→∞

∫
fk.

Dies liefert limk→∞
∫
fk =

∫
f , wie behauptet.

Definition und Bemerkung 1.56. Sei B ∈MN messbar und f : B → [0,∞] messbar,
und sei f die triviale Fortsetzung von f auf RN wie in Bemerkung 1.34(b). Wir setzen∫

B

f :=
∫
f.

Sätze 1.53 bis 1.55 übertragen sich dann auf Integrale über B. Es gilt insbesondere:

(a)
∫
B
f = λN+1(U(f)), wobei U(f) = {(x, y) ∈ B × R | 0 < y < f(x)} gilt.

(b)
∫
B
f = 0 ⇒ f = 0 f.ü. auf B.

Beachte, dass ebenfalls f = 1Bf gilt.

Satz 1.57. Seien a, b ∈ R, a < b und sei f : [a, b]→ [0,∞) Riemann-integrierbar. Dann
ist f messbar und es gilt ∫

[a,b]
f =

∫ b

a

f(t) dt.

Beweis. Für festes n ∈ N sei Zn := {x0, . . . , x2n} ⊆ [a, b] die äquidistante Zerlegung der
Feinheit b−a

2n , d.h. xk = a+k b−a2n , für k = 0, . . . , 2n. Seien ferner ϕn, ψn ∈ E([a, b]) definiert
durch

ϕn(t) = inf
[xk−1,xk]

f, ψn(t) = sup
[xk−1,xk]

f für alle t ∈ [xk−1, xk) und k = 1, . . . , 2n

und ϕn(b) = f(b) = ψn(b). Dann gilt

(1.9) 0 ≤ ϕn ≤ ϕn+1 ≤ f ≤ ψn+1 ≤ ψn

sowie

(1.10)
∫

[a,b]
ϕn = U(f, Zn),

∫
[a,b]

ψn = O(f, Zn)
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für alle n ∈ N. Für ρn := ψn − ϕn ∈ E([a, b]) gilt 0 ≤ ρn+1 ≤ ρn. Aus der Be-
schränktheit von f folgt außerdem

∫
ρ0 < ∞. Also existiert eine messbare Funktion

ρ := limn→∞ ρn : [a, b]→ [0,∞) und es gilt∫
[a,b]

ρ
Satz 1.55(b)= lim

n→∞

∫
[a,b]

ρn
(1.10)= lim

n→∞
[O(f, Zn)− U(f, Zn)] = 0,

wobei die letzte Gleichheit aus der Riemann-Integrierbarkeit von f folgt (siehe Mathe
I). Es folgt mit Satz 1.54(d), dass ρ = 0 f.ü. in [a, b] gilt und zusammen mit (1.9) folgt
limn→∞ ϕn = f f.ü. auf [a, b]. Nach Korollar 1.43 ist somit f messbar und es gilt∫

[a,b]
f

Satz 1.53= lim
n→∞

∫
[a,b]

ϕn
(1.9)= lim

n→∞
U(f, Zn) =

∫ b

a

f(t) dt.

Bemerkung 1.58. Ist B ∈MN und f : B → [0,∞] messbar, so sind andere gebräuchli-
che Schreibweisen für

∫
B
f auch:∫

B

f(x) dx,
∫
B

f(x) d(x1, . . . , xN),
∫
B

f(x) dλ(x) oder
∫
B

f(x)λ(dx).

Sind a, b ∈ R, a < b und B = (a, b), [a, b], (a, b], [a, b), so schreiben wir gelegentlich∫
B
f =

∫ b
a
f .

Bemerkung 1.59. Sei RN = Rk ×Rm mit k,m ∈ N und N = k +m. Für A ⊆ RN und
x ∈ Rk sei

Ax := {y ∈ Rm | (x, y) ∈ A} ⊆ Rm (x-Schnitt von A)
Man sieht leicht: Ist A offen, so ist Ax offen in Rm für alle x ∈ Rk.

Satz 1.60. Sei A ⊆ RN = Rk × Rm messbar. Dann gilt das Cavalierische Prinzip (CP):

(i) Ax ∈Mm für fast alle x ∈ Rk.

(ii) Die Funktion f : Rk → [0,∞], f(x) := λ∗(Ax) ist messbar.

(iii) Es gilt λ(A) =
∫
Rk f =

∫
Rk λ

∗(Ax) dx.

Beweis. Siehe z.B. [4, Kap. X.6].

Satz 1.61 (Satz von Fubini (1. Version)). Sei N = k +m und f : RN → [0,∞] messbar.
Für x ∈ Rk sei ferner fx : Rm → [0,∞] definiert durch fx(y) = f(x, y). Dann gilt

(a) Für fast alle x ∈ Rk ist fx messbar.

(b) Die fast überall definierte Funktion Rk → [0,∞], x 7→
∫
Rm fx =

∫
Rm f(x, y) dy ist

messbar und es gilt∫
RN
f =

∫
Rk

(∫
Rm

fx

)
dx =

∫
Rk

∫
Rm

f(x, y) dy dx.
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Beweis. (a) Sei (ϕk) ⊆ E(RN) eine aufsteigende Folgende nichtnegativer Elementarfunk-
tionen mit f = limk→∞ ϕk überall auf RN , so wie in Satz 1.47. Nach (CP) ist dann
ψxk(y) := ϕk(x, y) für festes k und x ∈ RkrMk mit einer k-dimensionalen Nullmenge Mk

eine Elementarfunktion auf Rm. Es folgt, dass ψxk für x ∈ Rk r
⋂∞
k=1Mk und alle k ∈ N

jeweils eine Elementarfunktion und somit fx = limk→∞ ψ
x
k für fast alle x in Rk messbar

ist.
Zu (b): Sei A := U(f) ⊆ RN+1 = Rk × Rm+1. Für x ∈ Rk ist dann

Ax := {(y, z) ∈ Rm × R | (x, y, z) ∈ A} = {(y, z) | 0 < z < f(x, y)} = U(fx) ⊆ Rm+1.

Für fast alle x ∈ Rk ist nun nach (a) die Funktion g : Rk → [0,∞], g(x) :=
∫
Rm fx =

λm+1(Ax) wohldefiniert. Nach (CP) ist g messbar und es gilt
∫
RN f = λN+1(A) =∫

Rk g.

Bemerkung 1.62. Sei f : RN → [0,∞] messbar. Die N -malige Anwendung von Satz 1.61
liefert ∫

RN
f =

∫
R
. . .

∫
R
f(x1, . . . , xN) dxN . . . dx1

Ist π : {1, . . . , N} → {1, . . . , N} eine Permutation, so gilt auch∫
RN
f =

∫
R
. . .

∫
R
f(x1, . . . , xN) dxπ(N) . . . dxπ(1).

Es kommt also bei nichtnegativen Funktionen nicht auf die Integrationsreihenfolge an.

Beispiel 1.63. Sei B := {(x, y) | 1 ≤ y ≤ 2, 1 ≤ x ≤ y} ⊆ R2 und f : B → [0,∞]
gegeben durch f(x, y) = y2

x2 . Als abgeschlossene Menge ist B messbar, ferner ist f als
stetige Funktion auf B messbar. Sei nun f : R2 → [0,∞] die triviale Fortsetzung von f .
Dann gilt:∫

B

f =
∫
R2
f =

∫
R

∫
R
f(x, y) dx dy =

∫ 2

1

∫ y

1

y2

x2 dx dy =
∫ 2

1

−y2

x

∣∣∣∣x=y

x=1
dy

=
∫ 2

1
(−y + y2) dy =

(
y3

3 −
y2

2

)∣∣∣∣2
1

=
(

8
3 − 2

)
−
(

1
3 −

1
2

)
= 7

3 −
3
2 = 5

6 .
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2 Integrierbare Funktionen
Im Folgenden sei stets B ⊆ RN eine messbare Menge.

Definition 2.1.

(a) Eine messbare Funktion f : B → R heißt (Lebesgue-)integrierbar (auf B), wenn∫
B
|f | <∞ gilt.

Wir setzen L1(B) := {f : B → R | f integrierbar}.

(b) Für f ∈ L1(B) sei∫
B

f :=
∫
B

f+ −
∫
B

f− ∈ R (Lebesgueintegral von f über B).

Man beachte: Nach Korollar 1.39 sind f+ := max{f, 0} und f− := −min{f, 0}
messbar und nichtnegativ und besitzen somit ein Integral. Ferner ist f± ≤ |f | und
somit ist

∫
B
f± ≤

∫
B
|f | <∞. Daher ist

∫
B
f ∈ R wohldefiniert.

Bemerkung 2.2. (a) Ist f ∈ L1(B) nichtnegativ, so stimmt
∫
B
f aus Definition 2.1(b)

mit Definition 1.51 überein.

(b) Ist f : B → R derart, dass
∫
B
|f | <∞ gilt, so stimmt f nach Abänderung auf einer

Nullmenge nach Satz 1.54 mit einer Funktion f̃ ∈ L1(B) überein. Wir werden
dies benötigen, wenn wir punktweise Grenzwerte von Funktionenfolgen in L1(B)
betrachten.

(c) f ∈ L1(B) ⇔ |f | ∈ L1(B).

(d) Ist g ∈ L1(B) und f : B → R messbar mit |f | ≤ g f.ü. auf B, so ist auch f ∈ L1(B)
(Majorantenkriterium).

(e) Ist g ∈ L1(B) und f : B → R messbar mit f = g f.ü. auf B, so ist auch f ∈ L1(B)
und

∫
B
f =

∫
B
g.

(f) Wir schreiben anstelle von
∫
B
f auch

∫
B
f(x) dx,

∫
B
f(x) dλ(x),

∫
B
f(x) λ(dx) bzw.∫

B
f(x) d(x1, . . . , xN).

Satz 2.3. Seien f, g ∈ L1(B) und sei α ∈ R. Dann gilt:

(a) Ist f ≤ g f.ü. auf B, so ist
∫
B
f ≤

∫
B
g.

(b) Ist f = g f.ü., so ist
∫
B
f =

∫
B
g.
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(c) f + αg ∈ L1(B) und
∫
B

(f + αg) =
∫
B
f + α

∫
B
g.

(d)
∣∣∫
B
f
∣∣ ≤ ∫

B
|f | (Standardabschätzung)

(e) Ist
∫
B
|f | = 0, so ist f = 0 f.ü. auf B.

Beweis. (a): Sei M ⊆ B eine Nullmenge mit f ≤ g auf B \M . Dann ist auch f+ ≤ g+

und f− ≥ g− auf B \M , also∫
B

f =
∫
B

f+ −
∫
B

f− ≤
∫
B

g+ −
∫
B

g− =
∫
B

g.

(b): folgt direkt aus (a).
(c): Es ist für F := f + αg: |F | ≤ |f |+ |α||g| auf B, also∫

B

|F | ≤
∫
B

|f |+ |α||g| =
∫
B

|f |+ |α|
∫
B

|g| <∞.

Die Linearität folgt ähnlich wie in (a).
(d):

∣∣∫
B
f
∣∣ =

∣∣∫
B
f+ −

∫
B
f−
∣∣ ≤ ∫

B
f+ +

∫
B
f− =

∫
B

(f+ + f−) =
∫
B
|f |.

(e): Folgt wie im Falle einer messbaren Funktion f : B → [0,∞].

Satz 2.4. Sei N = k +m.

(a) Satz von Fubini (2. Version): Sei f ∈ L1(RN). Dann ist für fast alle x ∈ Rk

die Funktion Rm → R, y 7→ f(x, y) integrierbar. Die f.ü. definierte Funktion
x 7→

∫
Rm f(x, y) dy lässt sich dabei zu einer Funktion in L1(Rk) fortsetzen, und es

gilt: ∫
RN
f =

∫
Rk

∫
Rm

f(x, y) dy dx.

(b) Ist f ∈ L1(B), so gilt auch

(2.1)
∫
RN
f =

∫
R
. . .

∫
R
f(x) dxN . . . dx1 =

∫
R
. . .

∫
R
f(x) dxπ(N) . . . dxπ(1)

für alle Permutationen π : {1, . . . , N} → {1, . . . , N}.

(c) Satz von Tonelli: Ist f : RN → R messbar und
∫
R . . .

∫
R|f(x)| dxπ(N) . . . dxπ(1) <∞

für mindestens eine Permutation π : {1, . . . , N} → {1, . . . , N}, so ist f ∈ L1(RN)
und (2.1) gilt für jede Permutation.

Beweis. Dies folgt direkt durch Anwendung vom Satz von Fubini (1. Version) auf f+

und f− bzw. auf |f |.

Bemerkung 2.5. (a) In Anwendungen ist man häufig vor Allem daran interessiert,
die Integrationsreihenfolge zu ändern, um Rechnungen vereinfachen zu können.
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(b) In Satz 2.12 weiter unten werden wir sehen, dass Satz 1.57 über den Zusammen-
hang von lebesgue- und Riemannintegral auf vorzeichenwechselnde Funktionen
ausgedehnt werden kann. Dies verwenden wir in den folgenden Beispielen.

Beispiel 2.6. Sei A ⊆ RN eine beschränkte messbare Menge mit λN(A) > 0. Dann ist
der Schwerpunkt S(A) = (s1, . . . , sN) ∈ RN von A definiert durch

si := 1
λ(A)

∫
A

xi d(x1, . . . , xN).

Konkretes Beispiel: Sei A := {x ∈ R2 | x2
1 − 3 < x2 < 1} ⊆ R2. Wir bemerken, dass

A ⊆ (−2, 2)× (−3, 1) gilt. Dann ist

λ(A) Satz 1.61=
∫
R
λ1(Ax1) dx1 =

∫ 2

−2

(
1− (x2

1 − 3)
)

dx1

=
∫ 2

−2
(4− x2

1) dx1 = 16− 16
3 = 32

3 .

Außerdem gilt |x11A(x)| ≤ 2 · 1A(x) und |x21A(x)| ≤ 3 · 1A(x), für alle x ∈ R2. Da 1A
integrierbar ist, liefert das Majorantenkriterium, dass die Funktionen x11A und x21A
integrierbar sind. Wir können den Satz von Fubini anwenden:∫

A

x1 dx =
∫
R2
x11A(x1, x2) dx Satz 2.4=

∫
R
x1

∫
R

1A(x1, x2) dx2 dx1 =
∫
R
x1λ

1(Ax1) dx1

=
∫ 2

−2
x1(4− x2

1) dx1 = 0 (ungerader Integrand)

sowie∫
A

x2 dx = . . . =
∫
R
x2

∫
R

1A(x1, x2) dx1 dx2 =
∫ 1

−3
x22
√
x2 + 3 dx2

= 2
∫ 4

0
(s− 3)

√
s ds = 2

(
2
5s

5
2 − 2s 3

2

)∣∣∣∣4
0

= 4
525 − 4 · 23 = −1

525 = −32
5 .

Es folgt für den Schwerpunkt:

S(A) = 3
32

(
0,−32

5

)
=
(

0,−3
5

)
.

Beispiel 2.7. Sei B := (0, 1)×(0, 1) ⊆ R2 und f : B → R definiert durch f(x, y) = x−y
(x+y)3 .

Dann ist∫ 1

0
f(x, y) dx =

∫ 1

0

x− y
(x+ y)3 dx =

∣∣∣∣∣ s = x+ y

ds = dx

∣∣∣∣∣ =
∫ 1+y

y

s− 2y
s3 ds

=
(
−1
s

+ y

s2

)∣∣∣∣s=1+y

s=y
= 1
y
− 1

1 + y
+ y

(1 + y)2 −
1
y

= − 1
(1 + y)2 ,
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also∫ 1

0

∫ 1

0
f(x, y) dx dy = −

∫ 1

0

1
(1 + y)2 dy =

∣∣∣∣∣ s = 1 + y

ds = dy

∣∣∣∣∣
= −

∫ 2

1

1
s2 ds = 1

s

∣∣∣∣2
1

= −1
2 .

Offenbar ist jedoch f(x, y) = −f(y, x) für alle (x, y) ∈ B, also folgt∫ 1

0
f(x, y) dy = −

∫ 1

0
f(y, x) dy = 1

(1 + x)2 , also
∫ 1

0

∫ 1

0
f(x, y) dy dx = 1

2 .

Hier hängt der Wert des iterierten Integrals von der Integrationsreihenfolge ab! Dies ist
kein Widerspruch zu Satz 1.61, denn f 6≥ 0. Ferner gilt f /∈ L1(B), denn∫

B

|f(x, y)| d(x, y) ≥
∫
{(x,y)∈B|x≥y}

x− y
(x+ y)3 d(x, y)

Satz 1.61=
∫ 1

0

∫ x

0

x− y
(x+ y)3 dy dx =

∣∣∣∣∣ s = x+ y

ds = dy

∣∣∣∣∣
=
∫ 1

0

∫ 2x

x

2x− s
s3 ds dx =

∫ 1

0

(
− x
s2 + 1

s

)∣∣∣∣2x
x

dx

=
∫ 1

0

(
1
x
− 1

4x + 1
2x −

1
x

)
dx = 1

4

∫ 1

0

1
x

dx = lim
ε→0+

1
4 log(x)

∣∣∣∣1
ε

=∞.

Somit ist dies auch kein Widerspruch zu Satz 2.4, und
∫
B
f ist nicht definiert.

Satz 2.8 (Satz von der monotonen Konvergenz). Seien fk ∈ L1(B) für k ∈ N.

(a) Ist fk+1 ≥ fk für alle k und supk
∫
B
fk < ∞, so ist f := limk→∞ fk ∈ L1(B) und

es gilt
∫
B
f = limk→∞

∫
B
fk.

(b) Ist fk+1 ≤ fk für alle k und infk
∫
B
fk > −∞, so ist f := limk→∞ fk ∈ L1(B) und

es gilt
∫
B
f = limk→∞

∫
B
fk.

Beweis. (a): Setze gk := fk − f1 für k ∈ N. Man beachte, dass hier alle fk Werte in R
annehmen und dass diese Differenz daher wohldefiniert ist. Dann ist 0 ≤ gk ≤ gk+1 für
alle k und für g := limk→∞ gk = f − f1 gilt nach Satz 1.53∫

B

g = lim
k→∞

∫
B

gk
Satz 2.3= lim

k→∞

∫
B

fk −
∫
B

f1 <∞.

Also ist g ∈ L1(B). Folglich ist f = g + f1 ∈ L1(B) und
∫
B
f =

∫
B
g +

∫
B
f1 =

limk→∞
∫
B
fk.

(b): Dies folgt nach (a) durch Anwendung auf −fk, k ∈ N.
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Satz 2.9 (Lemma von Fatou). Seien fk ∈ L1(B), k ∈ N und g ∈ L1(B).

(a) Ist fk ≥ g für alle k und supk∈N
∫
B
fk <∞, so ist auch f := lim infk→∞ fk ∈ L1(B)

und ∫
B

f ≤ lim inf
k→∞

∫
B

fk.

(b) Ist fk ≤ g für alle k und infk∈N
∫
B
fk > −∞, so ist auch f := lim supk→∞ fk ∈

L1(B) und ∫
B

f ≥ lim sup
k→∞

∫
B

fk.

Beweis. (a): Setze hk := inf l≥k fl. Dann ist hk messbar und g ≤ hk ≤ fk, also

|hk| ≤ |g|+ |fk| ∈ L1(B) und somit hk ∈ L1(B) für alle k ∈ N.

Weiterhin ist hk ≤ hk+1 für alle k und supk
∫
B
hk ≤ supk

∫
B
fk <∞. Mit Satz 2.8(a) folgt

f = limk→∞ hk ∈ L1(B) und∫
B

f = lim
k→∞

∫
B

hk = lim inf
k→∞

∫
B

hk ≤ lim inf
k→∞

∫
B

fk.

(b): folgt analog.

Satz 2.10 (Satz von der dominierten Konvergenz (Satz von Lebesgue)). Seien die
Funktionen fk für k ∈ N messbar auf B, und g ∈ L1(B) erfülle |fk| ≤ g auf B für alle
k ∈ N. Ferner möge der punktweise Grenzwert f := limk→∞ fk f.ü. auf B existieren.
Dann gilt fk, f ∈ L1(B) für k ∈ N und

∫
B
f = limk→∞

∫
B
fk.

Beweis. Für alle k ist fk ∈ L1(B) nach dem Majorantenkriterium. Ferner gilt∣∣∣∣∫
B

fk

∣∣∣∣ ≤ ∫
B

|fk| ≤
∫
B

|g| <∞.

Weiterhin ist f = lim infk→∞ fk = lim supk→∞ fk f.ü. auf B. Satz 2.9 liefert also

lim inf
k→∞

∫
B

fk ≥
∫
B

f ≥ lim sup
k→∞

∫
B

fk, also
∫
B

f = lim
k→∞

∫
B

fk.

Satz 2.11. Sei f ∈ L1(B). Dann gilt:

(a) Es existiert eine Folge von Elementarfunktionen fk ∈ E(B) mit limk→∞
∫
B
|f−fk| =

0.

(b) Es existiert eine Folge (fk)k ⊆ C(B) ∩ L1(B) mit limk→∞
∫
B
|f − fk| = 0.

(c) Es existiert eine Folge (fk)k ⊆ C(B) ∩ L1(B), so dass die Mengen {x ∈ RN |
fk(x) 6= 0} für jedes k ∈ N beschränkt sind und limk→∞

∫
B
|f − fk| = 0 gilt.
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Beweis. (a): Offenbar ist E(B) ⊆ L1(B) und nach Satz 1.47 existieren fk ∈ E(B), k ∈ N
mit |fk| ≤ |f | für alle k und fk → f punktweise. Setze gk := |fk − f |. Dann konvergiert
die Folge (gk)k punktweise gegen 0 und es gilt

|gk| ≤ |fk|+ |f | ≤ 2|f | auf B für alle k ∈ N.

Mit dem Satz von Lebesgue folgt limk→∞
∫
B
gk = 0 wie behauptet.

(b): Ohne Einschränkungen sei B = RN ; den Fall für allgemeine Mengen B kann man
durch den Übergang von f zur trivialen Fortsetzung f und durch Einschränkung der
erhaltenen Folgen (fk)k auf B erledigen.

Fall 1: f = 1Ω für eine offene Teilmenge Ω ⊆ RN . Dann definieren wir stetige Funktionen

fk : RN → R, fk(x) :=
{

min{1, k dist(x, ∂Ω)}, x ∈ Ω
0, x /∈ Ω

.

Es gilt 0 ≤ fk ≤ fk+1 ≤ f für alle k und limk→∞ fk = f punktweise auf Ω. Es folgt∫
RN
|f − fk|︸ ︷︷ ︸
≥0

dx =
∫
RN
f dx−

∫
RN
fk dx Satz 2.10→

∫
RN
f dx−

∫
RN
f dx = 0.

Fall 2: f = 1Ω für eine beschränkte messbare Teilmenge Ω ⊆ RN . Sei ε > 0. Mit
der Definition des äußeren Lebesguemaßes finden wir Qk ∈ QN , so dass Ω ⊆

⋃∞
k=1Qk

und
∑∞

k=1|Qk| ≤ λ(Ω) + ε/2 gelten. Dann überdecken wir diese halboffenen Quader mit
größeren offenen Quadern Q̃k so, dass

∑∞
k=1 λ(Q̃k) ≤ λ(Ω) + ε gilt. Dies liefert die offene

Teilmenge Ω′ :=
⋃∞
k=1 Q̃k mit Ω ⊆ Ω′ und∫

RN
|1Ω′ − 1Ω| dx = λ(Ω′ \ Ω) < ε.

Also folgt die Behauptung aus Fall 1.
Fall 3: f ∈ E(RN ). Dann lässt sich f als endliche Linearkombination von Funktion wie

im Fall 2 schreiben und die Behauptung folgt.
Fall 4: f ∈ L1(RN) beliebig. Dann existiert nach (a) zu jedem ε > 0 ein f̃ ∈ E(RN)

mit
∫
RN |f − f̃ | dx < ε. Also folgt die Behauptung aus Fall 3.

(c): Dies folgt nun aus einer Kombination von (a) und (b).

Satz 2.12. Seien a, b ∈ R, a < b.

(a) Sind a, b ∈ R und ist f : [a, b]→ R Riemann-integrierbar, so ist f ∈ L1([a, b]) mit∫
[a,b]

f =
∫ b

a

f(t) dt.

(b) Ist f : (a, b)→ R stetig und existiert das uneigentliche Riemann-Integral
∫ b
a
|f(t)| dt,

so ist f ∈ L1((a, b)) und∫
(a,b)

f =
∫ b

a

f(t) dt (uneigentliches Riemann-Integral).
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Beweis. (a): Ist f Riemann-integrierbar, so sind f± Riemann-integrierbar und somit
gilt die Behauptung für f± nach Satz 1.57 und die Behauptung folgt somit auch für
f = f+ − f−.
(b): Als stetige Funktion ist f messbar. Die Existenz von

∫ b
a
|f(t)| dt impliziert die

Existenz von
∫ b
a
f(t) dt. Seien nun rn, sn ∈ (a, b), n ∈ N mit rn < sn und limn→∞ rn = a,

limn→∞ sn = b. Sei ferner

fn : (a, b)→ R definiert durch fn(t) :=
{
f(t), t ∈ [rn, sn],
0, sonst.

Dann gilt limn→∞ fn = f punktweise auf (a, b). Wir unterscheiden nun zwei Fälle:
Fall 1: f ≥ 0 auf (a, b). Dann ist fn ≤ fn+1 für alle n ∈ N, also∫

(a,b)
f

Satz 1.53= lim
n→∞

∫
(a,b)

fn = lim
n→∞

∫
(rn,sn)

f
(a)= lim

n→∞

∫ sn

rn

f(t) dt =
∫ b

a

f(t) dt <∞.

Es folgt f ∈ L1((a, b)) und damit die Behauptung.
Fall 2: f beliebig. Der erste Fall (angewendet auf |f |) liefert dann |f | ∈ L1((a, b)). Da

ferner |fn| ≤ |f | auf (a, b) für alle n ∈ N gilt, folgt mit Satz 2.10:

f ∈ L1((a, b)) und
∫

(a,b)
f = lim

n→∞

∫
(a,b)

fn
wie oben=

∫ b

a

f(t) dt.

Bemerkung 2.13. Satz 2.12(b) ist ohne die Bedingung der Riemann-Integrierbarkeit von
|f | im Allgemeinen falsch. Konkretes Beispiel: Die Funktion f : (0,∞)→ R, f(x) = sin(x)

x

ist messbar und der Betrag des Riemann-Integral ist endlich, d.h.
∣∣∣∫∞0 f(x) dx

∣∣∣ < ∞.
Aber f ist nicht Lebesgueintegrierbar, da

∫∞
0 f+(x) dx =

∫∞
0 f−(x) dx =∞ gilt.

Bemerkung 2.14.

(a) Für f ∈ L1(B) lässt sich eine sogenannte Halbnorm durch

‖f‖L1(B) :=
∫
B

|f | dx

definieren. Für f, g ∈ L1(B) und α ∈ R lässt sich leicht überprüfen:
(i) ‖αf‖L1(B) = |α|‖f‖L1(B).
(ii) ‖f‖L1(B) ≥ 0. Ferner gilt ‖f‖L1(B) = 0 genau dann, wenn f = 0 f.ü. in B

(wegen der f.ü.-Eigenschaft handelt es sich hier nicht um eine Norm).
(iii) ‖f + g‖L1(B) ≤ ‖f‖L1(B) + ‖g‖L1(B).
Wir definieren nun auf L1(B) eine Äquivalenzrelation durch

f ∼ g :⇔ f = g fast überall auf B.
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Wir setzen
[f ] := {g ∈ L1(B) | f ∼ g}

als die zugehörige Äquivalenzklasse zu f und definieren:

L1(B) := {[f ] | f ∈ L1(B)}.

Es gilt dann

α[f ] = [αf ], und [f + g] = [f ] + [g] für f, g ∈ L1(B), α ∈ R.

Damit ist L1(B) ein R-Vektorraum und durch ‖[f ]‖L1(B) := ‖f‖L1(B) wird eine
Norm auf L1(B) erklärt. Aus Bequemlichkeitsgründen schreibt man üblicherweise
f ∈ L1(B), d.h. man lässt die eckigen Klammern weg. Somit steht f also sowohl
für eine bestimmte Funktion als auch für alle anderen Funktionen, die fast überall
mit dieser Funktion übereinstimmen. Schlampig (aber eingängig) formuliert steht
f also für eine nur bis auf Nullmengen eindeutig definierte Funktion. Wir schließen
uns im Folgenden dieser Bezeichnungsweise an.

(b) Man kann zeigen:
1. Ist fk ∈ L1(B) für k ∈ N und ist f ∈ L1(B) mit ‖f −fk‖L1(B) → 0 für k →∞

(man sagt (fk)k konvergiert gegen f in L1(B)), so existiert eine Teilfolge (fkj )j ,
welche punktweise fast überall auf B gegen f konvergiert.

2. Ist (fk)k ⊆ L1(B) eine Cauchyfolge bzgl. ‖·‖L1(B), so konvergiert (fk)k, d.h.
es gibt ein f ∈ L1(B) derart, dass fk gegen f in L1(B) konvergiert. Es folgt,
dass L1(B) ein Banachraum mit Norm ‖·‖L1(B) ist.
Wichtig ist hierbei: Eine L1(B)-Konvergenz liefert im Allgemeinen nicht die
punktweise Konvergenz der Gesamtfolge (auch nicht fast überall).

(c) Analog definiert man für p ≥ 1:

Lp(B) := {[f ] | |f |p ∈ L1(B)}, ‖[f ]‖Lp(B) :=
(∫

B

|f |p
)1/p

.

Lp(B) ist dann für alle p ≥ 1 ein Banachraum. Wie zuvor lässt man die eckigen
Klammern üblicherweise weg und schreibt einfach f ∈ Lp(B).
Speziell: Für p = 2 ist L2(B) ein Hilbertraum mit dem Skalarprodukt 〈f, g〉L2(B) :=∫
B
f · g für f, g ∈ L2(B) (L2(RN) wird auch als der Raum der quadratintegrablen

Funktionen bezeichnet).

2.1 Parameterabhängige Integrale und
Transformationsformeln

Satz 2.15 (Satz über die stetige Parameterabhängigkeit von Integralen). Sei X ein
metrischer Raum, f : X ×B → R eine Funktion mit folgenden Eigenschaften:
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(i) f(x, ·) : B → R ist messbar für alle x ∈ X

(ii) f(·, y) : X → R ist stetig für fast alle y ∈ B

(iii) Es existiert g ∈ L1(B) derart, dass für alle x ∈ X gilt: |f(x, ·)| ≤ g auf B.

Dann ist die Funktion h : X → R, h(x) =
∫
B
f(x, y) dy stetig.

Beweis. Seien a ∈ X und (xk)k ⊆ X eine Folge mit limk→∞ xk = a. Definiere fk : B → R
durch fk(y) = f(xk, y). Für alle k ∈ N ist dann fk messbar nach (i) und |fk| ≤ g auf B
nach (iii). Weiterhin gilt

fk → f(a, ·) : B → R punktweise f.ü. auf B nach (ii).

Mit dem Satz über die dominierte Konvergenz, Satz 2.10, folgt

h(a) =
∫
B

f(a, y) dy = lim
k→∞

∫
B

fk(y) dy = lim
k→∞

∫
B

f(xk, y) dy = lim
k→∞

h(xk),

also ist h stetig in a.

Satz 2.16 (Satz zur Vertauschung partieller Ableitung und des Integrals). Seien X ⊆ RN

offen und f : X ×B → R eine Funktion mit

(i) f(x, ·) ∈ L1(B) für alle x ∈ X.

(ii) f(·, y) : X → R ist stetig differenzierbar für fast alle y ∈ B.

(iii) Es existiert g ∈ L1(B) derart, dass für alle j ∈ {1, 2, . . . , N} und x ∈ X gilt:
| ∂f
∂xj

(x, ·)| ≤ g f.ü. auf B.

Dann ist die Funktion h : X → R, h(x) =
∫
B
f(x, y) dy stetig differenzierbar mit

(2.2) ∂jh(x) =
∫
B

∂f

∂xj
(x, y) dy für alle x ∈ X, j = 1, . . . , N .

Beweis. Es ist nur (2.2) zu zeigen, denn dann folgt die Stetigkeit von ∂jh : X → R aus
Satz 2.15. Sei dazu x ∈ X, j ∈ {1, . . . , N} und (εm)m ⊆ R \ {0} eine Nullfolge. Für
m ∈ N definiere

km : B → R, km(y) = 1
εm

(
f(x+ εmej, y)− f(x, y)

)
.

Dann ist km messbar für jedes m ∈ N und

(2.3) km →
∂f

∂xj
(x, ·) für m→∞ punktweise f.ü. nach Voraussetzung (ii).

Nach Korollar 1.43 ist ∂f
∂xj

(x, ·) dann messbar. Weiterhin ist nach den Voraussetzungen

|km(y)| =
∣∣∣∣ ∂f∂xj (x′, y)

∣∣∣∣ ≤ |g(y)| für alle y ∈ B und m ∈ N.
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Hier ist x′ = x′(y,m) nach dem Mittelwertsatz (siehe Mathe II) als Zwischenstelle in
{x+ tej | |t| ≤ |εm|} gewählt. Mit Satz 2.10 und (2.3) folgt

h(x+ εmej)− h(x)
εm

=
∫
B

km(y) dy →
∫
B

∂f

∂xj
(x, y) dy für m→∞.

Dies liefert (2.2).

Beispiel 2.17. Die Gammafunktion Γ: (0,∞) → (0,∞) ist definiert durch Γ(z) :=∫∞
0 tz−1e−t dt.

(a) Wir zeigen zuerst: Γ ∈ C∞((0,∞)). Um dies einzusehen, sei k ∈ N0. Wir wählen
zunächst feste 0 < a < b und definieren die stetige Funktion f(z, t) := tz−1e−t. Sei
ferner

gk : (0,∞)→ R, definiert durch gk(t) :=
{
|log t|kta−1e−t, t < 1,
|log t|ktb−1e−t, t ≥ 1.

Dann ist gk stückweise stetig und somit auf jedem kompakten Teilintervall von
(0,∞) Riemann-integrierbar. Wir erhalten∫ ∞

0
gk(t) dt ≤

∫ 1

0
|log t|kta−1 dt+

∫ ∞
1
|log t|ktb−1e−t dt <∞.

Wegen gk ≥ 0 und nach Satz 2.12 ist gk ∈ L1((0,∞)). Weiterhin ist∣∣∣∣∣
(
∂

∂z

)k
f(z, t)

∣∣∣∣∣ ≤ gk(t)

für alle t ∈ (0,∞) und z ∈ (a, b). Mit Satz 2.16 folgt daher induktiv Γ ∈ C∞((a, b)).
Da a und b beliebig gewählt waren, folgt Γ ∈ C∞(R).

(b) Für alle z > 0 ist zΓ(z) = Γ(z + 1). Insbesondere gilt für n ∈ N: Γ(n) = (n− 1)!.
(leichte Übung!)

Satz 2.18 (Transformationssatz). Seien U, V ⊆ RN offen und ϕ ∈ Diff(U, V ) (C1-
Diffeomorphismen zwischen U und V ). Sei ferner f : V → R gegeben. Dann gilt: Genau
dann ist f ∈ L1(V ), wenn (f ◦ ϕ)|det Jϕ| ∈ L1(U) ist, und in diesem Fall gilt die
Integraltransformationsformel:

(2.4)
∫
V

f(y) dy =
∫
ϕ(U)

f(y) dy =
∫
U

f(ϕ(x))|det Jϕ(x)| dx.

Beweis. Umfangreich, siehe z.B. [10], Kapitel IV.2.

Bemerkung und Beispiel 2.19. Seien U, V, ϕ und f wie in Satz 2.18.
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(a) (2.4) gilt auch, falls f nichtnegativ und lediglich messbar ist — Integrierbarkeit ist
in diesem Fall nicht notwendig.

(b) Ist ϕ affin linear, d.h. ϕ(x) = Tx+ c für x ∈ U mit T ∈ GL(N) und c ∈ RN , so ist
det Jϕ(x) = detT für alle x ∈ U und somit gilt

(2.5)
∫
V

f(y) dy = |det(T )|
∫
U

f(Tx+ c) dx.

(c) Ist K ⊆ U messbar, so auch ϕ(K) ⊆ V und es gilt

λN(ϕ(K)) =
∫
K

|det Jϕ(x)| dx.

Dies folgt aus (a) angewendet auf f : RN → R, f(x) = 1ϕ(K)(x). Mit ϕ wie in
(b) erhält man speziell λN(T (K) + c) = |det(T )|λN(K) für T ∈ GL(N) und
T (K) + c := {Tx+ c | x ∈ K}.
Spezielles Beispiel: Seien a, b, c > 0, und sei A =

{
(x, y, z) | x2

a2 + y2

b2 + z2

c2 ≤ 1
}
⊆ R3

ein Ellipsoid. Um λ3(A) zu berechnen, betrachten wir T ∈ GL(N) definiert durch
T (x, y, z) = (ax, by, cz). Dann ist det(T ) = abc > 0 und A = T (B1(0)), also folgt

λ3(A) = |det(T )|λ3(B1(0)) Übung!= abc
4
3π.

(d) Ist W = [0, 1]N ⊆ RN der Einheitswürfel und T ∈ GL(N), so ist T (W ) das
von den Vektoren Tei, i = 1, . . . , N aufgespannte Parallelotop. Nach (c) gilt
λN(T (W )) = |det(T )|. Man bezeichnet daher det(T ) auch als das orientierte
Volumen von T (W ) (vgl. Mathe II).

(e) Der Beweis von Satz 2.18 besteht im Wesentlichen aus drei großen Schritten.
Im ersten Schritt beweist man die Formel (2.5) aus (b) für stetige Funktionen
f : RN → R, die außerhalb einer gewissen beschränkten Menge nur den Wert
0 annehmen. Dabei schreibt man die lineare Transformationsabbildung T als
Komposition von Elementarmatrizen (siehe Mathe II) und wendet den Satz von
Fubini an.
Im zweiten Schritt betrachtet man allgemein Transformationsabbildungen ϕ : U →
V und integrierbare stetige Funktionen f : V → R. Hier schreibt man f als eine lokal
endliche Summe von Funktionen, die nur auf einer kleinen Menge nicht verschwinden.
Auf diesen Mengen ist jeweils die Abweichung zwischen der Abbildung ϕ und ihrer
Linearisierung aber ebenfalls klein, so dass man durch einen Approximationsprozess
zum Ziel gelangt.
Im dritten Schritt verwendet man Satz 2.11(b), um von stetigen Funktionen zu
integrierbaren Funktionen übergehen zu können.

Satz 2.20.
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(a) (ebene Polarkoordinaten) Für f ∈ L1(R2) gilt∫
R2
f(x) dx =

∫ ∞
0

r

∫ π

−π
f(r cos(ϕ), r sin(ϕ)) dϕ dr.

(b) (Zylinderkoordinaten) Für f ∈ L1(R3) gilt∫
R3
f(x) dx =

∫ ∞
−∞

∫ ∞
0

r

∫ π

−π
f(r cos(ϕ), r sin(ϕ), z) dϕ dr dz.

Beweis. (a): Sei U := (0,∞)× (−π, π) ⊆ R2 und P2 : U → R2 definiert durch P2(r, ϕ) =
(r cos(ϕ), r sin(ϕ)). Aus Mathe II folgt

• V := P2(U) = R2 \ {(x, 0) | x ≤ 0}; insbesondere ist R2 \ V eine Nullmenge im R2.

• P2 ∈ Diff(U, V ) und det(JP2(r, ϕ)) = r für alle (r, ϕ) ∈ U .

Mit Satz 2.18 und dem Satz von Fubini folgt die Behauptung.
(b): folgt nun aus (a) und dem Satz von Fubini.

Beispiel 2.21. Sei f : R→ R definiert durch f(x) = e−x2 . Wegen

0 ≤ f(x) ≤
{

1, |x| ≤ 1,
e−|x|, |x| ≥ 1,

und mit Satz 2.12(b) folgt, dass f integrierbar ist. Zur Berechnung von
∫
f betrachten

wir g : R2 → R, definiert durch g(x, y) = f(x)f(y). Dann ist g ≥ 0 und

(2.6)
∫
R2
g =

∫
R
f(x)

∫
R
f(y) dy dx =

∫
R
f(x) dx

∫
R
f(y) dy =

(∫
R
f(x) dx

)2

<∞.

Also ist g ∈ L1(R2) und somit nach Satz 2.20(a):∫
R2
g =

∫ ∞
0

r

∫ π

−π
e−r2(cos2(ϕ)+sin2(ϕ)) dϕ dr =

∫ ∞
0

r

∫ π

−π
e−r2 dϕ dr

= π

∫ ∞
0

2re−r2 dr =

∣∣∣∣∣ t = r2

dt = 2r dr

∣∣∣∣∣ = π

∫ ∞
0

e−t dt = −πe−t
∣∣∞
0 = π.

Aus (2.6) folgt also
∫
R f =

√
π .

Satz 2.22 (Allgemeine Polarkoordinaten). Sei N ≥ 2 und f ∈ L1(RN). Dann gilt∫
RN
f =

∫ ∞
0

rN−1
∫ π

−π

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
(N − 2)-mal

f(PN(r, ϕ, θ1, . . . , θN−2))×

× sin θ1 sin2 θ2 . . . sinN−2 θN−2 dθ1 . . . dθN−2 dϕ dr,
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wobei PN induktiv definiert ist durch P2(r, ϕ) = (r cos(ϕ), r sin(ϕ)) und

PN(r, ϕ, θ1, . . . , θN−2) = (PN−1(r, ϕ, θ1, . . . , θN−3) sin(θN−2), r cos(θN−2)) für N > 2.

Insbesondere gilt für f ∈ L1(R3):∫
R3
f =

∫ ∞
0

r2
∫ π

−π

∫ π

0
f(r cos(ϕ) sin(θ), r sin(ϕ) sin(θ), r cos(θ)) sin(θ) dθ dϕ dr.

Korollar 2.23. Sei f ∈ L1(RN ) eine radialsymmetrische Funktion, d.h. es gibt f̃ : R→ R
mit f(x) = f̃(|x|2) für alle x ∈ RN . Dann gilt∫

RN
f(x) dx = ωN−1

∫ ∞
0

rN−1f̃(r) dr,

mit

ωN−1 := 2π
∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
(N − 2)-mal

sin θ1 sin2 θ2 . . . sinN−2 θN−2 dθ1 . . . dθN−2 = 2πN/2

Γ
(
N
2

) .
Bemerkung: Mit den Begriffsbildungen im folgenden Kapitel werden wir ωN−1 als die
Oberfläche der Einheitssphäre SN−1 := {x ∈ RN | |x|2 = 1} ⊆ RN interpretieren können.

Beweis. Die Integralformel folgt direkt aus Satz 2.22 und der Identität∣∣PN(r, ϕ, θ1, . . . , θN−2)
∣∣ = r.

Bemerkung und Beispiel 2.24.

(a) Ist f eine nichtnegative messbare Abbildung, so gelten die Formeln aus Satz 2.20,
Satz 2.22 und Korollar 2.23 ohne weitere Voraussetzung.

(b) Sei B := B1(0) ⊆ RN die Einheitskugel und α > −N . Dann ist die Funktion
x 7→ |x|α2 1B\{0}(x) radialsymmetrisch. Somit gilt gemäß Korollar 2.23:∫

B

|x|α dx = ωN−1

∫ 1

0
rα+N−1 dr = ωN−1

N + α
.

Insbesondere gilt also mit α = 0:

λN(B1(0)) =
∫
RN

1B1(0)(x) dx = ωN−1

N
= 2πN/2

NΓ
(
N
2

) = πN/2

Γ
(
N
2 + 1

) .
Mit der Bemerkung aus Korollar 2.23 liefert dies einen direkten Zusammenhang
zwischen dem Kugelvolumen und ihrer Oberfläche.
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3 Integration auf
Untermannigfaltigkeiten und der
Gaußsche Integralsatz

Im Folgenden sei stets M ⊆ RN eine k-dimensionale Untermannigfaltigkeit.

Definition und Bemerkung 3.1.

(a) Sei k ≤ N und A ∈ RN×k eine Matrix mit maximalem Rang. Dann ist AtA ∈ Rk×k

positiv definit, die Abbildung x 7→ Ax ist injektiv und es gilt det(AtA) > 0 (siehe
Mathe II). Dabei gilt die Formel

AtA = (〈Aei, Aej〉)i,j=1,...,k,

d.h. die Matrix AtA hängt nur von der Länge der Vektoren Ae1, . . . , Aek und den
Winkeln zwischen diesen Vektoren ab. Die positive Zahl

√
det(AtA) gibt dabei das

k-dimensionale Volumen des von Ae1, . . . , Aek in RN aufgespannten Parallelotops
an. Um dies zu sehen genügt der Fall N = k; dann gilt

√
det(AtA) = |detA| und

dies haben wir bereits in Bemerkung und Beispiel 2.19(d) gesehen.

(b) Sei ψ : U →M ∩ V eine lokale Parametrisierung der k-dimensionalen Unterman-
nigfaltigkeit M . Wir setzen

gij := 〈∂iψ, ∂jψ〉 : U → R für i, j = 1, . . . , k

und
gψ := det ((gij)1≤i,j≤k) = det

(
J tψJψ

)
: U → (0,∞).

Die Abbildung gψ heißt Gramsche Determinante der Parametrisierung ψ. Im
Spezialfall k = 2, N = 3 gilt: gψ = |∂1ψ × ∂2ψ|22, wobei a× b das Vektorprodukt
zweier Vektoren a, b ∈ R3 beschreibt (Übung).

Beispiel 3.2. Sei M := SN−1 ⊆ RN , V = RN \ {eN}, ψ : RN−1 → M ∩ V die ste-
reographische Projektion, gegeben durch ψ(x) = 1

1+|x|22

(
2x
|x|22−1

)
. Nach Übungsblatt 2

folgt (
Jψ(x)

)t
Jψ(x) = 4

(1 + |x|22)2EN−1 für x ∈ RN−1.

Es folgt also für die Gramsche Determinante von ψ:

gψ(x) =
(

4
(1 + |x|22)2

)N−1

für x ∈ RN−1.
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Satz 3.3. Seien (U1, V1, ϕ) und (U2, V2, ψ) zwei lokale Parametrisierungen von M mit
W := M ∩ V1 ∩ V2 6= ∅. Sei ferner f : M ∩ V1 ∩ V2 → R gegeben. Dann gilt: (f ◦ ϕ)√gϕ
ist genau dann integrierbar, wenn (f ◦ ψ)√gψ integrierbar ist. In diesem Fall gilt

(3.1)
∫
ϕ−1(W )

(f ◦ ϕ)√gϕ =
∫
ψ−1(W )

(f ◦ ψ)√gψ .

Beweis. Sei m := N − k. Nach Mathe 2 (♣♣♣) ist die Parameterwechselabbildung

ρ := ψ−1 ◦ ϕ : ϕ−1(W )→ ψ−1(W )

ein C1-Diffeomorphismus. Wir untersuchen das Transformationverhalten der Gramschen
Determinanten unter dem Parameterwechsel. Wegen ϕ = ψ ◦ ρ ist Jϕ = (Jψ ◦ ρ)Jρ, also

gϕ = det(J tϕJϕ) = det
(
J tρ(Jψ ◦ ρ)t(Jψ ◦ ρ)Jρ

)
= (det Jρ)2 det

(
(Jψ ◦ ρ)t(Jψ ◦ ρ)

)
= (det Jρ)2gψ ◦ ρ.

Dies liefert zusammen mit dem Transformationssatz (Satz 2.18): (f ◦ ψ)√gψ ist genau
dann integrierbar, wenn

(f ◦ ψ ◦ ρ)√gψ ◦ ρ |det Jρ| = (f ◦ ψ ◦ ρ)
√

(det Jρ)2(gψ ◦ ρ) = (f ◦ ϕ)√gϕ

integrierbar ist. Ist dies der Fall, so folgt weiter (3.1) aus dem Transformationssatz.

Wegen Satz 3.3 ergibt die folgende Definition Sinn:

Definition 3.4. Sei (U, V, ψ) eine lokale Parametrisierung von M . Wir nennen eine
Funktion f : M∩V → R elementar integrierbar überM∩V , wenn die Funktion (f◦ψ)√gψ
über U integrierbar ist. In diesem Fall definieren wir das Integral von f über M ∩V durch∫

M∩V
f dσ :=

∫
U

(f ◦ ψ)√gψ .

Beispiel 3.5. Sei wiederum M := S2 ⊆ R3 und S− := S2 r {e3}. Dann ist 1 elementar
integrierbar über S−. Um dies zu sehen, betrachten wir die stereographische Projektion
ψ : R2 →M ∩ V wie in Beispiel 3.2 mit V := R3 \ {e3}. Nach Beispiel 3.2 gilt

gψ(x) =
(

4
(1 + |x|22)2

)2

,

also mit Satz 1.61 (Fubini für nichtnegative Funktionen) und Korollar 2.23∫
S−

1 dσ =
∫
R2

4
(1 + |x|22)2 dx = 2π

∫ ∞
0

r · 4
(1 + r2)2 dr

=

∣∣∣∣∣ s = 1 + r2

ds = 2r dr

∣∣∣∣∣ = 4π
∫ ∞

1

1
s2 ds = 4π <∞.
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Das nächste Ziel ist, die lokale Definition eines Integrals über M aus Definition 3.4 zu
globalisieren, d.h. auf die ganze Untermannigfaltigkeit M auszudehnen. Dazu werden wir
die lokalen Definitionen mit Hilfe einer Zerlegung der Eins „zusammenkleben“.

Definition 3.6. Seien U ⊆ RN offen und k ∈ N0 ∪ {∞}.

(a) Für f : U → Rm bezeichnen wir die Menge supp(f) := {x ∈ U | f(x) 6= 0} ∩ U als
Träger von f .

(b) Wir bezeichnen mit Ck
c (U,Rm) den Vektorraum der Abbildungen f ∈ Ck(U,Rm),

deren Träger kompakt ist. Diese Abbildungen betrachten wir stets als durch 0 auf
RN fortgesetzt. Im Fall m = 1 schreiben wir Ck

c (U) anstelle von Ck
c (U,R). Der

Raum C∞c (U) wird auch als Raum der Testfunktionen auf U bezeichnet.

Proposition 3.7 (Zerlegung (Partition) der Eins). Sei V = {Vi | i ∈ N} eine Familie
offener Teilmengen von RN und sei V :=

⋃
i∈N Vi. Dann existieren Funktionen ηj ∈

C∞(V ), j ∈ N, mit

(i) ηj(x) ∈ [0, 1] für alle x ∈ V und j ∈ N,

(ii)
∑∞

j=1 ηj ≡ 1 auf V ,

(iii) für jedes j ∈ N existiert i ∈ N mit supp(ηj) ⊆ Vi,

(iv) jedes x ∈ V besitzt eine offene Umgebung U in V , so dass U ∩ supp(ηj) 6= ∅ nur
für endlich viele j ∈ N gilt.

Die Familie {ηj | j ∈ N} nennt man eine der Familie V untergeordnete glatte Zerlegung
der Eins. Die im Beweis konstruierte Zerlegung hat kompakte Träger, d.h. in (iii) gilt
zusätzlich ηj ∈ C∞c (Vi).

Bemerkung 3.8. Anders als üblich betrachten wir hier aus technischen Gründen glatte
Zerlegungen der Eins, ohne immer kompakte Träger zu fordern.

Beweis von Proposition 3.7. Setze

(3.2) ρ(x) :=
{

exp
( 1
|x|22−1

)
, |x|2 < 1,

0, |x|2 ≥ 1,

und definiere für ε > 0 die Funktion ρε(x) := ρ(x/ε). Dann ist ρε ∈ C∞c (RN) (Übung!),
supp(ρε) = Bε(0) und ρε > 0 in Bε(0).
Für k ∈ N definieren wir die Mengen

Ak :=
{
x ∈ V

∣∣∣ dist(x,RN r V ) ≥ 1
k
, |x|2 ≤ k

}
.

Dann gilt Ak ⊆ Ak+1 für k ∈ N, Ak ist kompakt und V =
⋃∞
k=1Ak. Man nennt {Ak}k∈N

auch eine Ausschöpfung von V mit kompakten Mengen.
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Zu jedem x ∈ V existieren i ∈ N und εx ∈ (0, 1) mit Bεx(x) ⊆ Vi. Sei X1 ⊆ V eine
endliche Teilmenge, so dass

A1 ⊆
⋃
x∈X1

Bεx(x)

gilt. Induktiv finden wir für k ≥ 2 eine endliche Menge Xk ⊆ V mit

Ak r Åk−1 ⊆
⋃
x∈Xk

Bεx(x).

Dies ist möglich, weil Ak r Åk−1 kompakt ist. Für X :=
⋃∞
k=1Xk gilt dann

V =
⋃
x∈X

Bεx(x).

Es ist leicht einzusehen, dass die Familie
{
Bεx(x)

∣∣ x ∈ X} eine lokal endliche Über-
deckung von V ist, d.h., dass zu jedem y ∈ V eine offene Umgebung U ⊆ V von y
existiert, so dass U ∩Bεx(x) 6= ∅ nur für endlich viele x ∈ X gilt.
Wir schreiben X = (xj)j∈N und εj := εxj und definieren für j ∈ N die gesuchten

Funktionen durch

ηj(x) :=


ρεj(x− xj)∑∞
j=1 ρεj(x− xj)

, x ∈ V,

0, x ∈ RN r V.

Definition und Satz 3.9. Seien (Ui, Vi, ψi) lokale Parametrisierungen von M , so dass
V := {Vi | i ∈ N} eine offene Überdeckung von M darstellt. Sei ferner {ηj | j ∈ N}
eine der Familie V untergeordnete glatte Zerlegung der Eins und sei κ : N→ N so, dass
supp ηj ⊆ Vκ(j) für alle j ∈ N gilt. Wir nennen eine Funktion f : M → R integrierbar
über M , wenn f über alle Vi jeweils elementar integrierbar ist und wenn gilt:

(3.3)
∞∑
j=1

∫
M∩Vκ(j)

|f |ηj dσ <∞.

Ist dies der Fall, dann ist das Integral von f über M ,

(3.4)
∫
M

f dσ :=
∞∑
j=1

∫
M∩Vκ(j)

fηj dσ,

wohldefiniert, d.h., unabhängig von V und der gewählten Zerlegung der Eins.

Beweis. Sei f über alle Vi jeweils elementar integrierbar. Dann ist (f ◦ψi)
√
gψi für jedes

i ∈ N messbar und daher fηj und |f |ηj, für j ∈ N, jeweils über Vκ(j) elementar integrier-
bar. Die Integrale in (3.3) und auf der rechten Seite von (3.4) sind also wohldefiniert.
Jetzt nehmen wir zusätzlich (3.3) an. Wegen (3.3) und wegen der Standardabschätzung
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(Satz 2.3(d)) ist die Reihe in (3.4) absolut konvergent und somit der Ausdruck auf der
rechten Seite wohldefiniert.
Um die Definitionen zu rechtfertigen, fehlt nur noch, für die Integrierbarkeit von f

über M und den Ausdruck auf der rechten Seite von (3.4) die Unabhängigkeit von V und
der Zerlegung der Eins zu zeigen.
Sei zunächst {γj | j ∈ N} eine weitere V untergeordnete Zerlegung der Eins und

λ : N→ N gegeben mit supp(γj) ⊆ Vλ(j) für alle j ∈ N. Für j, k ∈ N folgt supp(ηjγk) ⊆
Vκ(j) ∩ Vλ(k) und daher

(3.5)
∞∑
j=1

∫
M∩Vκ(j)

|f |ηj dσ

=
∞∑
j=1

∫
M∩Vκ(j)

∞∑
k=1

|f |ηjγk dσ Satz 1.55(a)=
∞∑

j,k=1

∫
M∩Vκ(j)

|f |ηjγk dσ

Satz 3.3=
∞∑

j,k=1

∫
M∩Vλ(k)

|f |ηjγk dσ Satz 1.55(a)=
∞∑
k=1

∫
M∩Vλ(k)

∞∑
j=1

|f |ηjγk dσ

=
∞∑
k=1

∫
M∩Vλ(k)

|f |γk dσ.

Somit hängt der Begriff der Integrierbarkeit von f über M nicht von der gewählten
Zerlegung der Eins ab.
Für j ∈ N konvergiert

∑∞
k=1 fηjγk punktweise gegen fηj. Außerdem gilt∣∣∣∣ ∞∑
k=1

fηjγk

∣∣∣∣ ≤ ∞∑
k=1

|f |ηjγk = |f |ηj,

eine in M ∩ Vκ(j) elementar integrierbare Funktion. Der Satz von der dominierten Kon-
vergenz (Satz 2.10) liefert also∫

M∩Vκ(j)

fηj dσ =
∫
M∩Vκ(j)

∞∑
k=1

fηjγk dσ =
∞∑
k=1

∫
M∩Vκ(j)

fηjγk dσ.

Analog gilt auch ∫
M∩Vλ(k)

fγk dσ =
∞∑
j=1

∫
M∩Vλ(k)

fηjγk dσ.

Also kann man das Argument in (3.5) auf f statt |f | anwenden und erhält, dass die
rechte Seite von (3.4) nicht von der gewählten Zerlegung der Eins abhängt.
Sei nun W := {W` | ` ∈ N} eine weitere offene Überdeckung von M aus lokalen

Parametrisierungen, und sei {γk | k ∈ N} eine W untergeordnete glatte Zerlegung der
Eins. Wir setzen V :=

⋃
i∈N Vi und W :=

⋃
`∈NWi. Indem wir alle Vi jeweils durch Vi∩W

und alleW` jeweils durchW`∩V ersetzen, können wir V = W annehmen. Dazu schränken
wir auch die Abbildungen der Zerlegungen der Eins jeweils auf V ein und erhalten wieder
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glatte Zerlegungen der Eins, welche auf M unverändert sind. Die Ausdrücke in (3.3) und
(3.4) ändern sich also nicht durch dieses Vorgehen. Dann ist auch V ∪ W eine offene
Überdeckung von M mit lokalen Parametrisierungen, und sowohl {ηj | j ∈ N} als auch
{γk | k ∈ N} sind V ∪W untergeordnete Zerlegungen der Eins. Aus dem oben gezeigten
folgt die Unabhängigkeit von diesen Zerlegungen und somit die Unabhängigkeit von der
offenen Überdeckung durch lokale Parametrisierungen.

Bemerkung 3.10. Wenn M durch (U, V, ψ) global parametrisiert ist, dann können wir
die triviale Zerlegung der Eins, {1V }, in (3.4) verwenden. Das Integral von f über M ist
dann einfach das zur Parametrisierung gehörende elementare Integral.

Satz 3.11. Seien f, h : M → R integrierbar über M und sei α ∈ R. Dann sind auch
f + h und αf integrierbar über M , und es gilt

(a)
∫
M

(f + h) dσ =
∫
M
f dσ +

∫
M
h dσ.

(b)
∫
M
αf dσ = α

∫
M
f dσ.

Beweis. Dies folgt sofort aus (3.4).

Satz 3.12. Sei M kompakt und f : M → R stetig. Dann ist f integrierbar über M .

Beweis. Zu jedem Punkt p ∈M existiert eine Einbettungskarte (V, τ) für M bei p. Sei
r > 0 klein genug, so dass Br(p) ⊆ V gilt. Dann ist τ(Br(p)) eine kompakte Teilmenge
von τ(V ) und somit ist Jτ−1 auf τ(Br(p)) beschränkt. Mit U := τ(M ∩ Br(p)) und
ψ : U → M ∩ Br(p), ψ := τ−1|U , ist (U,Br(p), ψ) eine lokale Parametrisierung von M
in p und sowohl U als auch gψ sind beschränkt. Diese Auswahl können wir an jedem
Punkt p von M treffen und folglich die kompakte Menge M mit endlich vielen lokalen
Parametrisierungen (Ui, Vi, ψi), i = 1, 2, . . . , n, überdecken, so dass jeweils Ui und gψi
beschränkt sind.
Da f stetig auf M ist, ist f beschränkt. Zusammen mit der Stetigkeit von f und der

Beschränktheit von Ui und gψi erhalten wir, dass f über jede Menge M ∩ Vi elementar
integrierbar ist. Sei {ηj | j ∈ N} eine der Familie {Vi | i = 1, 2, . . . , n} untergeordnete
glatte Zerlegung der Eins mit supp(ηj) ⊆ Vκ(j) für alle j. Es folgt mit dem Satz von
Beppo Levi:

∞∑
j=1

∫
M∩Vκ(j)

|f |ηj dσ =
n∑
i=1

∑
j∈κ−1(i)

∫
M∩Vκ(j)

|f |ηj dσ

=
n∑
i=1

∫
M∩Vi
|f |

∑
j∈κ−1(i)

ηj dσ ≤
n∑
i=1

∫
M∩Vi
|f | dσ <∞.

Definition 3.13.

(a) Eine Teilmenge S ⊆M heißt
• integrierbar über M , falls die Funktion 1S : M → R integrierbar über M ist.

42



• k-dimensionale Nullmenge, falls S integrierbar über M und
∫
M

1S dσ = 0 ist.

(b) Ist S ⊆ M integrierbar über M , so nennen wir volk(S) :=
∫
M

1S dσ das k-
dimensionale Volumen von S.

(c) Eine Aussage für Punkte aus M gilt per Definition f.ü. auf M , wenn sie für alle
Punkte bis auf eine Nullmenge in M gilt.

Satz 3.14. Seien f, h : M → R integrierbar über M . Dann gilt:

(a) Ist f ≤ h f.ü. auf M , so folgt
∫
M
f dσ ≤

∫
M
h dσ.

(b) Ist f = h f.ü. auf M , so folgt
∫
M
f dσ =

∫
M
h dσ.

(c) Ist g : M → R eine Abbildung, so dass für jede lokale Parametrisierung (U, V, ψ)
von M die Abbildung (g ◦ ψ)√gψ messbar ist und so, dass |g| über M integrierbar
ist, dann ist g über M integrierbar und es gilt

∣∣∫
M
g dσ

∣∣ ≤ ∫
m
|g| dσ.

Beweis. Ähnlich wie im Beweis von Satz 2.3 nach Übergang zu lokalen Parametrisierungen.

Bemerkung 3.15. Seien (Ui, Vi, ψi), i ∈ N, lokale Parametrisierungen von M , und sei
K ⊆M ∩

(⋃
i∈N Vi

)
. Es folgt sofort aus Definition und Satz 3.9 und Definition 3.13, dass

K genau dann eine k-dimensionale Nullmenge ist, wenn ψ−1
i (K ∩ Vi) für jedes i ∈ N eine

Nullmenge ist. Es folgt:

• Jede Teilmenge einer k-dimensionalen Nullmenge wieder eine k-dimensionale Null-
menge.

• Eine Funktion f : M → R ist genau dann integrierbar über M , wenn sie über
M rK integrierbar ist. In diesem Fall gilt

∫
M
f dσ =

∫
MrK f dσ.

Bemerkung 3.16. Ist f : M → R integrierbar über M , so schreiben wir anstelle von∫
M
f dσ im Folgenden auch∫

M

f(x) dσ(x) bzw.
∫
M

f(x1, . . . , xN) dσ(x1, . . . , xN).

Bemerkung und Beispiel 3.17.

(a) Sei M := S2 ⊆ R3.
1. Die Menge K := {x ∈ S2 | x2 = 0 und x1 ≤ 0} ist eine Nullmenge in S2.

Um dies zu sehen, betrachten wir die stereographischen Projektionen ψ und
ϕ aus Beispiel 7.44 in Mathe 2. Dann ist K ⊆ ψ(R2) ∪ ϕ(R2) = S2 und
ψ−1(K) = {x ∈ R2 | x1 ≤ 0, x2 = 0} = ϕ−1(K) eine Nullmenge im R2. Mit
Bemerkung 3.15 folgt, dass K ⊆ S2 eine zweidimensionale Nullmenge ist.
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2. Ist f : S2 → R stetig, so gilt

(3.6)
∫
S2
f dσ =

∫ π

−π

∫ π

0
f(cosϕ sin θ, sinϕ sin θ, cos θ) sin θ dθ dϕ.

Tatsächlich ist nämlich f = f1V +f1K mit K wie in 1. und V = S2\K. Ferner
ist f1V elementar integrierbar über S2 mittels der lokalen Parametrisierung

ψ : (−π, π)× (0, π)→ V, ψ(ϕ, θ) = (cosϕ sin θ, sinϕ sin θ, cos θ).

Für die Gramsche Determinante gilt dabei gψ(ϕ, θ) = sin2 θ, also folgt (3.6)
wie behauptet.
Spezielles Beispiel: Sei a := (0, 0, s) ∈ R3 mit s > 1 und f : S2 → R definiert
durch f(x) := 1

|x−a|2 . Dann ist∫
S2
f dσ =

∫ π

−π

∫ π

0
f(cosϕ sin θ, sinϕ sin θ, cos θ) sin θ dθ dϕ

=
∫ π

−π

∫ π

0

(
cos2 ϕ sin2 θ + sin2 ϕ sin2 θ + (cos θ − s)2)− 1

2 sin θ dθ dϕ

=
∫ π

−π

∫ π

0

(
sin2 θ + cos2 θ + s2 − 2s cos θ

)− 1
2 sin θ dθ dϕ

=
∫ π

−π

∫ π

0

sin θ
(1 + s2 − 2s cos θ) 1

2
dθ dϕ =

∣∣∣∣∣ z = cos θ
dz = − sin θ dθ

∣∣∣∣∣
= 2π

∫ 1

−1

1
(1 + s2 − 2sz) 1

2
dz

= 2π√
2s

∫ 1

−1

1√
1+s2

2s − z
dz = 2π√

2s

(
−2
√

1 + s2

2s − z
)∣∣∣∣1
−1

= 4π√
2s

(
−
√

1 + s2 − 2s
2s +

√
1 + s2 + 2s

2s

)
= 2π

s
((1 + s)− (s− 1))

= 4π
s

= vol2(S2)
|a|2

Dieses Ergebnis hat eine physikalische Interpretation: Das elektrische Potential
(oder Gravitationspotential), welches von einer homogenen Ladungsverteilung
(oder Massenverteilung) auf einer Sphäre erzeugt wird, entspricht dem Po-
tential, welches von einer Punktladung (oder Punktmasse) gleicher Größe im
Zentrum der Sphäre erzeugt wird.

(b) Ein zu 1. entsprechendes Resultat erhält man für stetige Funktionen f : SN−1 → R
mit allgemeinen Polarkoordinaten. Noch allgemeiner: Betrachtet man für f den
Definitionsbereich für r > 0

rSN−1 := {x ∈ RN | |x|2 = r},
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so erhält man

N = 2 :
∫
rS1

f dσ = r

∫ π

−π
f(r cosϕ, r sinϕ) dϕ,

N = 3 :
∫
rS2

f dσ = r2
∫ π

−π

∫ π

0
f(r cosϕ sin θ, r sinϕ sin θ, r cos θ) sin θ dθ dϕ,

N ≥ 4 :
∫
rSN−1

f dσ = rN−1
∫ π

−π

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
(N − 2)-mal

f(PN(r, ϕ, θ1, . . . , θN−2))×

× sin θ1 sin2 θ2 . . . sinN−2 θN−2 dθ1 . . . dθN−2 dϕ,

wobei PN gegeben ist wie in Satz 2.22. Insbesondere gilt also für f : RN → R stetig:∫
RN
f(x) dx =

∫ ∞
0

rN−1
∫ π

−π

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
(N − 2)-mal

f(PN(r, ϕ, θ1, . . . , θN−2))×

× sin θ1 sin2 θ2 . . . sinN−2 θN−2 dθ1 . . . dθN−2 dϕ dr

=
∫ ∞

0
rN−1

∫
SN−1

f(r · x̃) dσ(x̃) dr.

Definition 3.18. Der Schwerpunkt S(M) = (s1, . . . , sN) ∈ RN einer k-dimensionalen
Untermannigfaltigkeit des RN ist definiert durch

si := 1
volk(M)

∫
M

xi dσ(x), für i = 1, . . . , N ,

falls diese Integrale existieren. Üblich ist auch die folgende, vektorwertige Schreibweise:

S(M) = 1
volk(M)

∫
M

x dσ(x) ∈ RN .

Beispiel 3.19. Sei U ⊆ RN−1 offen und M := Graph f ⊆ RN für eine C1-Funktion
f := U → R. Dann wird M global parametrisiert durch ψ : U → M , ψ(x) = (x, f(x))
und es gilt

gψ(x) = det Jψ(x)tJψ(x) = 1 + |∇f(x)|22 (Übung!).

Im Falle der Existenz der Integrale gilt also

volN−1(M) =
∫
M

1M dσ =
∫
U

√
1 + |∇f(x)|22 dx

und (vektorwertig)

S(M) =
[∫

U

√
1 + |∇f(x)|22 dx

]−1 ∫
U

(x, f(x))
√

1 + |∇f(x)|22 dx ∈ RN .
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Spezielles Beispiel:
Sei U := B1(0) ⊆ R2 und f : U → R gegeben durch f(x) =

√
1− |x|22 . Dann ist

M := Graph f die obere Halbsphäre mit vol2(M) = 2π. Für die zugehörige globale
Parametrisierung gilt gψ(x) = 1 + |x|22

1−|x|22
= 1

1−|x|22
. Also ist S(M) = (0, 0, s3) mit

s3 = 1
2π

∫
U

√
1− |x|22

√
1

1− |x|22
dx = λ2(U)

2π = 1
2 ,

d.h. S(M) = (0, 0, 1
2 ).

Satz und Definition 3.20 (Rotationsflächen). Sei M ⊆ R× (0,∞) ⊆ R2 eine eindi-
mensionale Untermannigfaltigkeit und RM := {(x, y, z) ∈ R3 | (x,

√
y2 + z2 ) ∈M} die

von M erzeugte Rotationsfläche (bzgl. der Rotation um die x-Achse). Dann ist RM ⊆ R3

eine zweidimensionale Untermannigfaltigkeit und es gilt

(3.7) vol2(RM) = 2π
∫
M

r dσ(x, r) (Erste Guldinsche Regel).

Anschaulich: Das zweidimensionale Volumen von RM ergibt sich als Produkt aus der
„Länge von M“ (d.h. vol1(M)) und dem Umfang des Kreises, der durch Rotation des
Schwerpunktes von M um die x-Achse erzeugt wird.

Beweis. Seien (Ui, Vi, ρi), i ∈ N, lokale Parametrisierungen von M , so dass V := {Vi |
i ∈ N} eine Überdeckung von M bildet, und sei {ηj | j ∈ N} eine der Familie V
untergeordnete glatte Zerlegung der Eins mit supp ηj ⊆ Vκ(j) für alle j. Wir betrachten
A := R× {0} × (−∞, 0) und definieren

Ṽi :=
{

(x, y, z) ∈ R3 ∣∣ √y2 + z2 ∈ Vi
}
r A, Ṽ :=

∞⋃
i=1

Ṽi,

sowie ψi : Ũi := Ui×(−π, π)→ RM∩Ṽi durch ψi(t, ϕ) := (ρi,1(t), ρi,2(t) sinϕ, ρi,2(t) cosϕ),
für i ∈ N. Es folgt

Jψi(t, ϕ) =

 ρ̇i,1(t) 0
ρ̇i,2(t) sinϕ ρi,2(t) cosϕ
ρ̇i,2(t) cosϕ −ρi,2(t) sinϕ


und somit

(3.8) gψi(t, ϕ) = |ρ̇i(t)|22ρi,2(t)2 = ρi,2(t)2gρi(t) > 0.

Insbesondere ist Jψi injektiv für alle (t, ϕ) ∈ Ũi. Man zeigt leicht, dass ψi : Ũi → RM ∩ Ṽi
ein Homöomorphismus ist. Damit sind alle ψi lokale Parametrisierungen für RM und die
Mengen Ṽi bilden eine offene Überdeckung von RM r A. Analog kann man auch lokale
Parametrisierungen von RM in allen Punkten RM ∩ A konstruieren. Damit ist RM eine
zweidimensionale Untermannigfaltigkeit von R3. Es ist leicht zu sehen, dass die Menge
RM ∩ A eine 1-dimensionale Untermannigfaltigkeit ist und daher eine 2-dimensionale
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Nullmenge in RM . Nach Bemerkung 3.15 gilt vol2(RM) = vol2(RM r A), und letzteres
werden wir jetzt ausrechnen.

Es sei γj : Ṽ → [0, 1] durch γj(x, y, z) := ηj(x,
√
y2 + z2 ) gegeben. Dann ist {γj | j ∈

N} eine der Familie {Ṽi | i ∈ N} untergeordnete glatte Zerlegung der Eins. Für j ∈ N
und i := κ(j) haben wir∫

RM∩Ṽi
γj dσ =

∫
Ũi

(γj ◦ ψi)
√
gψi

(3.8)= 2π
∫
Ui

(ηj ◦ ρi)ρi,2
√
gρi = 2π

∫
M∩Vi

rηj dσ.

Dies liefert

vol2(RM r A) =
∫
RMrA

dσ =
∞∑
j=1

∫
RM∩Ṽκ(j)

γj dσ = 2π
∞∑
j=1

∫
M∩Vκ(j)

rηj dσ = 2π
∫
M

r dσ.

Man beachte: wir haben hier nicht die Endlichkeit der Integrale vorausgesetzt. Da wir
aber nur nichtnegative Funktionen integrieren, ergibt das trotzdem Sinn. Ist aber z.B. M
kompakt, so sind alle auftretenden Integrale endlich.

Beispiel 3.21. Sei 0 < r1 < r2 und M := {(x, r) ∈ R × (0,∞) | x2 + (r − r2)2 = r2
1}.

Die Menge RM nennt man dann Torus. Nach Satz und Definition 3.20 gilt dann:

vol2(RM)
2π =

∫
M

r dσ(x, r).

Setzt man für t ∈ (−r1, r1) die Funktion r±(t) := r2 ±
√
r2

1 − t2 , dann gilt

M = Graph r+ ∪· Graph r− ∪· {(r1, r2), (−r1, r2)}.

Folglich gilt analog zu Beispiel 3.19∫
M

r dσ(x, r)

=
∫ r1

−r1

r+(t)
√

1 + ṙ+(t)2 dt+
∫ r1

−r1

r−(t)
√

1 + ṙ−(t)2 dt

=
∫ r1

−r1

(r2 +
√
r2

1 − t2 )

√
1 + t2

r2
1 − t2

dt+
∫ r1

−r1

(r2 −
√
r2

1 − t2 )

√
1 + t2

r2
1 − t2

dt

= 2r1r2

∫ r1

−r1

1√
r2

1 − t2
dt =

∣∣∣∣∣ t = r1 cosϕ
dt = −r1 sinϕ dϕ

∣∣∣∣∣
= 2r1r2

∫ 0

π

−r1 sin(ϕ)√
r2

1 − r2
1 cos2(ϕ)

dt = 2r1r2

∫ π

0
1 dt = 2πr1r2.

Insgesamt folgt also vol2(RM) = 4π2r1r2.

Definition 3.22. Eine stetige Funktion ν : M → RN heißt Einheitsnormalenfeld (kurz:
ENF) auf M , wenn gilt:
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(i) ν(p) ∈ Np(M) für alle p ∈M .

(ii) |ν(p)|2 = 1 für alle p ∈M .

Bemerkung und Beispiel 3.23.

(a) Ist ν ein ENF auf M , so auch −ν.

(b) Sei M = SN−1 ⊆ RN . Dann ist ein ENF von M gegeben durch ν(x) = x.

(c) Sei allgemeiner M := h−1(c) für einen regulären Wert c einer C1-Abbildung
h : V → RN−k, welche auf einer offenen Teilmenge V ⊆ RN definiert ist. Dann sind
∇h1
|∇h1|2 , . . . ,

∇hN−k
|∇hN−k|2

Einheitsnormalenfelder auf M nach Satz 7.41 in Mathe 2.

(d) Sei M := Graph f für eine C1-Abbildung f : U → RN−k definiert auf einer offenen
Teilmenge U ⊆ Rk. Dann sind für i = 1, . . . , N − k die Abbildungen

νi : M → RN , νi(x, f(x)) = (−∇fi(x), ei)√
1 + |∇fi(x)|22

für x ∈ U

Einheitsnormalenfelder von M , wobei hier ei ∈ RN−k der i-te Koordinatenvektor
sei.
Spezialfall: k = N − 1: Dann ist ein Einheitsnormalenfeld gegeben durch

ν : M → RN , ν(x, f(x)) = (−∇f(x), 1)√
1 + |∇f(x)|22

(e) (Lokale Einheitsnormalenfelder) Sei ψ : U →M ∩ V eine lokale Parametrisierung
einer zweidimensionalen Untermannigfaltigkeit des R3 und sei

µ = ∂1ψ × ∂2ψ

|∂1ψ × ∂2ψ|2
: U → R3.

Dann ist durch
ν : M ∩ V → R3, ν(p) = µ(ψ−1(p))

ein ENF auf M ∩ V gegeben.

Satz und Definition 3.24. Sei Ω ⊆ RN beschränkt und offen. Wir sagen Ω habe
einen C1-Rand, wenn zu jedem p ∈ ∂Ω eine offene Umgebung V ⊆ RN von p und eine
C1-Funktion h : V → R existiert mit

• Ω ∩ V = {x ∈ V | h(x) < 0},

• 0 ist ein regulärer Wert von h.

Man nennt Ω dann auch ein C1-berandetes Kompaktum. Ist dies erfüllt, so gilt:

(a) ∂Ω ∩ V = {x ∈ V | h(x) = 0} und V r Ω = {x ∈ V | h(x) > 0}.
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(b) ∂Ω ist eine N − 1-dimensionale Untermannigfaltigkeit des RN .

(c) Es existiert genau ein ENF ν auf ∂Ω derart, dass für alle p ∈ ∂Ω ein ε > 0 existiert
mit

(3.9) p+ tν(p) /∈ Ω für 0 < t < ε.

ν heißt äußeres Einheitsnormalenfeld von Ω.

Beweis. Zu (a): Sei h(x) = 0. Weil 0 ein regulärer Wert von h ist, folgt v := ∇h(x) 6= 0.
Für kleines ε > 0 liefert dies h(x + εv) = h(x) + ε|v|22 + o(ε) > 0 und h(x − εv) =
h(x)− ε|v|22 + o(ε) < 0, also x ∈ V ∩ Ω ∩ (RN r Ω) = ∂Ω ∩ V . Es folgt

(3.10) {x ∈ V | h(x) = 0} ⊆ ∂Ω ∩ V.

Es ist klar, dass in (3.10) die umgekehrte Inklusion gilt. Damit ist die erste Aussage
gezeigt. Die zweite Aussage ergibt sich aus Ω ∩ V = (Ω ∪ ∂Ω) ∩ V = {x ∈ V | h(x) ≤ 0}
durch Negation.
Zu (b) und (c): Sei M := ∂Ω. Da M ∩ V = h−1(0) nach (a), ist M ∩ V eine (N − 1)-

dimensionale Untermannigfaltigkeit des RN nach Satz 7.41 in Mathe 2. Durch Variation
von p erhält man die Aussage für ganz M . Ferner ist NpM = Spann{ν(p)} mit ν(p) =
∇h(p)
|∇h(p)|2 , wieder nach Satz 7.41 in Mathe 2. Wie im Beweis von (a) erhält man ε > 0 mit

p− tν(p) ∈ Ω und p+ tν(p) 6∈ Ω für t ∈ (0, ε).

Der normierte Vektor ν(p) ∈ NpM ist also durch (3.9) eindeutig festgelegt und hängt
in V ∩M stetig von p ab. Es folgt, dass auf ganz M ein Einheitsnormalenfeld existiert,
welches (3.9) in jedem Punkt p ∈M erfüllt.

Bemerkung 3.25. Man nennt Ω ⊆ RN auch ein Kompaktum mit Ck-Rand für k ∈
N ∪ {∞}, wenn die Funktion h in Satz und Definition 3.24 eine Ck-Funktion ist. Im Fall
k =∞ spricht man von einem glatten Rand.

Beispiel 3.26. Sei V ⊆ RN offen, h ∈ C1(V ) und c ∈ R ein regulärer Wert von h derart,
dass die Menge {x ∈ V | h(x) ≤ c} ⊆ V kompakt ist. Dann ist Ω := {x ∈ V | h(x) <
c} ⊆ V beschränkt mit C1-Rand, denn für jeden Punkt x ∈ ∂Ω sind die Voraussetzungen
in Satz und Definition 3.24 mit der Funktion h− c : V → R anstelle von h erfüllt. Ferner
ist das äußere Einheitsnormalenfeld von Ω global gegeben durch

ν(x) = 1
|∇h(x)|2

∇h(x) für x ∈ ∂Ω.

Spezielles Beispiel: Seien r, a1, . . . , aN > 0, h : RN → R gegeben durch h(x) = a1x
2
1 +

. . .+ aNx
2
N und E := {x ∈ RN | h(x) < r2}. Das so beschriebene Ellipsoid E hat einen

glatten Rand.
Noch Spezieller: Für a1 = . . . = aN = r = 1 ist E := B1(0) ⊆ RN und ∂E = SN−1. Das

äußere Normalenfeld von B1(0) ist gegeben durch ν : SN−1 → RN , ν(x) = x.
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Satz 3.27 (Gauß’scher Integralsatz). Sei V ⊆ RN offen, Ω ⊆ V ein Kompaktum mit
glattem Rand und ν : ∂Ω→ RN das äußere Einheitsnormalenfeld von Ω. Dann gilt∫

Ω
divF =

∫
∂Ω
〈F, ν〉 dσ für alle F ∈ C1(V,RN).

(Erinnerung: div(F ) =
∑N

k=1 ∂kFk.)

Bemerkung und Beispiel 3.28. (a) In der Situation von Satz 3.27 nennt man das
Integral

(3.11)
∫
∂Ω
〈F, ν〉 dσ

den aus Ω austretenden Fluss des Vektorfelds F .
Betrachtet man z.B. eine Flüssigkeitsströmung entlang eines durch F ∈ C1(R3,R3)
gegebenen Geschwindigkeitsfeldes, so kann man die lokale Größe 〈F, ν〉 dσ als die
Flüssigkeitsmenge interpretieren, welche das infinitesimal kleine Flächenstück dσ
pro Zeiteinheit nach außen durchfließt. Ist die Flüssigkeit inkompressibel, so muss
für jedes Kompaktum Ω mit C1-Rand der Gesamtfluss durch ∂Ω in der Summe
Null ergeben: Mit dem Gauß’schen Integralsatz also∫

Ω
divF = 0 für jedes solche Ω,

und dies liefert divF ≡ 0.
Im Umkehrschluss liegen im Fall divF 6= 0 sogenannte „Quellen“ oder „Senken“
vor (oder Bereich, in denen die Flüssigkeit komprimiert oder expandiert werden
kann (vgl. Mathe II)).

(b) Sei F : RN → RN gegeben durch F (x) = x. Dann ist divF (x) = N für alle x.
Somit gilt für jedes Kompaktum Ω ⊆ RN mit C1-Rand:

N volN(Ω) =
∫

Ω
divF (x) dx =

∫
∂Ω
〈x, ν(x)〉 dσ(x).

Im Fall Ω := B1(0) ⊆ RN ergibt sich mit dem äußeren ENF ν : SN−1 = ∂B1(0)→
RN , ν(x) = x der Zusammenhang:

volN−1(∂B1(0)) =
∫
∂B1(0)

1 dσ(x) =
∫
∂B1(0)

〈x, x〉 dσ(x) = N volN(B1(0)) = 2πN/2
Γ(N/2) .

Randbemerkung: Für jedes Kompaktum Ω mit C1-Rand und volN (Ω) = volN (B1(0))
gilt

volN−1(∂Ω)
volN(Ω) ≥ N (isoperimetrische Ungleichung)

Bei vorgegebenem Volumen minimiert die Kugel also die Oberfläche unter allen
Kompakta mit C1-Rand.
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(c) Ein Körper Ω — mathematisch modelliert als ein Kompaktum mit C1-Rand —
befinde sich in einer Flüssigkeit mit konstanter Dichte c, welche die Menge {x ∈
R3 | x3 ≤ 0} ausfüllt. Sei ν : ∂Ω → R3 das äußere ENF. Im Punkt x ∈ ∂Ω übt
dann (in geeigneten Einheiten) die Flüssigkeit auf Ω den Druck c|x3| in Richtung
des „inneren“ ENF −ν(x) aus. Die Gesamtkraft, die auf den Körper wirkt, ist nun
gegeben durch (Vektorschreibweise)

K = (K1, K2, K3) =
∫
∂Ω
cx3ν(x) dσ(x),

also für festes i mit F (x) = x3ei :

Ki =
∫
∂Ω
cx3νi(x) dσ(x) = c

∫
∂Ω
〈F, ν〉 dσ Satz 3.27= c

∫
Ω

divF.

Es folgt Ki = 0 für i = 1, 2 und K3 = c
∫

Ω 1 = c volN(Ω). Auf den Körper wirkt
also eine Auftriebskraft in x3-Richtung, die der Gewichtskraft der verdrängten
Flüssigkeit entspricht.

Definition 3.29. Sei Ω ⊆ RN offen. Wir definieren für k ∈ N0 ∪ {∞} die Funktionen-
räume

Ck(Ω,RM) :=
{
f ∈ Ck(Ω,RM)

∣∣∣∣∣ alle partiellen Ableitungen von f bis zur Ord-
nung k haben jeweils eine stetige Fortsetzung
auf Ω.

}
Korollar 3.30 (Partielle Integration und Greensche Formeln). Es sei Ω ⊆ RN offen und
derart, dass Ω ein Kompaktum mit C1-Rand ist. Sei ν : ∂Ω→ RN das äußere ENF von
Ω.

(a) Für F ∈ C1(Ω,RN) und f, g ∈ C1(Ω) gilt∫
Ω
〈∇g, F 〉 =

∫
∂Ω
〈gF, ν〉 dσ −

∫
Ω
g divF.

Insbesondere gilt für alle i = 1, . . . , N∫
Ω
f∂ig =

∫
∂Ω
fgνi dσ −

∫
Ω
g∂if.

(b) Für u, v ∈ C2(Ω) gilt ∫
Ω

∆u =
∫
∂Ω
〈∇u, ν〉 dσ

(Wir schreiben auch kurz ∂νu := 〈∇u, ν〉 für die x-abhängige Richtungsableitung in
Richtung ν) ∫

Ω
〈∇u,∇v〉 =

∫
∂Ω
v〈∇u, ν〉 dσ −

∫
Ω
v∆u∫

Ω
(v∆u− u∆v) =

∫
∂Ω

〈
v∇u− u∇v, ν

〉
dσ
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Beweis. Übung, falls F ∈ C1(V,RN), f, g ∈ C1(V ) und u, v ∈ C2(V ) gelten, für eine
offene Umgebung V von Ω.
Im allgemeinen Fall betrachtet man für n ∈ N

Ωn := {x ∈ Ω | dist(x, ∂Ω) > 1/n},

eine Ausschöpfung von Ω durch offene Mengen mit kompaktem Abschluss. Dann hat Ωn

einen C1-Rand wenn n groß genug ist und die Aussagen gelten jeweils mit Ωn statt Ω.
Man kann zeigen, dass dann alle Integrale über Ωn und ∂Ωn für n→∞ jeweils gegen
die entsprechenden Integrale über Ω und ∂Ω konvergieren.

Bemerkung 3.31. Ist v ∈ C2
c (Ω), so ist auch ∂iv, ∂i∂jv ∈ Cc(Ω) für alle i, j = 1, . . . , N .

Folglich gilt speziell für u ∈ C2(Ω) und v ∈ C2
c (Ω) nach Korollar 3.30 (siehe auch

Lemma 3.32 unten): ∫
Ω
〈∇u,∇v〉 = −

∫
Ω
v∆u

Nun zum Beweis des Gauß’schen Integralsatzes.

Lemma 3.32. Sei Ω ⊆ RN offen und i ∈ {1, . . . , N}. Dann gilt:

(a)
∫

Ω ∂if = 0 für alle f ∈ C1
c (Ω).

(b)
∫

Ω g∂if = −
∫

Ω f∂ig für alle f ∈ C1
c (Ω) und g ∈ C1(Ω).

Beweis. Offensichtlich folgt (b) aus (a) durch Anwendung auf fg ∈ C1
c (Ω).

Zu (a): O.E. sei Ω = RN , denn wir können f als C1-Funktion trivial auf RN \ U
fortsetzen. Ferner sei o.E. i = 1 und R > 0 so groß gewählt, dass supp(f) ⊆ (−R,R)N
gilt. Für festes x′ = (x2, . . . , xN) ist dann∫ R

−R
∂1f(x1, x

′) dx1 = f(x1, x
′)|x1=R
x1=−R = 0,

mit dem Satz von Fubini also∫
RN
∂if =

∫
(−R,R)N

∂if =
∫ R

−R
. . .

∫ R

−R
∂1f(x1, . . . , xN) dx1 . . . dxN = 0.

Korollar 3.33. Sei Ω ⊆ RN offen und F ∈ C1
c (Ω,RN). Dann gilt

∫
Ω divF = 0.

Beweis. Dies folgt direkt aus Lemma 3.32.

Satz 3.34 (Gauß’scher Integralsatz (1. Teil)). Sei Ω ⊆ RN ein Kompaktum mit C1-Rand.
Dann existiert zu jedem p ∈ Ω eine offene Umgebung U = U(p) ⊆ RN derart, dass für
alle F ∈ C1

c (U,RN) gilt: ∫
U∩Ω

divF =
∫
U∩∂Ω
〈F, ν〉 dσ.
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Beweis. 1. Fall: p ∈ Ω. Mit U := Ω gilt dann∫
Ω∩U

divF =
∫

Ω
divF Korollar 3.33= 0 =

∫
U∩∂Ω
〈F, ν〉 dσ,

da supp(F ) ∩ ∂Ω = ∅.
2. Fall: p ∈ ∂Ω. Nach dem Satz von der impliziten Funktion (vgl. Mathe II) existiert

(nach evtl. Umnummerierung der Koordinaten) eine offene Umgebung U ′ ⊆ RN−1 von
p′ = (p1, . . . , pN−1), eine Intervallumgebung I = (a, b) ⊆ R von pN und g ∈ C1(U ′, I) mit

∂Ω ∩ U = Graph g = {(y, g(y)) | y ∈ U ′} für U := U ′ × I.

O.E. gelte ferner U ∩ Ω = {(y, t) | y ∈ U ′, a < t < g(y)}. Sei nun zunächst f ∈ C1
c (U,R)

gegeben. Dann gilt mit dem Satz von Fubini:∫
U∩Ω

∂Nf =
∫
U ′

∫ g(y)

a

∂tf(y, t) dt dy =
∫
U ′
f(y, g(y)) dy,

weil f(y, a) = 0 gilt. Ist ferner i ∈ {1, . . . , N − 1} und k ∈ C1
c (U ′,R) definiert durch

k(y) =
∫ g(y)
a

f(y, t) dt, so gilt

∂ik(y) = f(y, g(y))∂ig(y) +
∫ g(y)

a

∂if(y, t) dt (Siehe Übung Mathe II).

Da nach Lemma 3.32 ferner
∫
U ′
∂ik(y) dy = 0 gilt, folgt∫

Ω∩U
∂if =

∫
U ′

∫ g(y)

a

∂if(y, t) dt dy = −
∫
U ′
f(y, g(y))∂ig(y) dy.

Für F ∈ C1
c (U,RN) folgt somit∫
Ω∩U

divF =
N∑
i=1

∫
Ω∩U

∂iFi

= −
N−1∑
i=1

∫
U ′
Fi(y, g(y))∂ig(y) dy +

∫
U ′
FN(y, g(y)) dy

=
∫
U ′

〈
F (y, g(y)),

(
−∇g(y)

1

)〉
dy

Bemerkung und Beispiel 3.23(d)=
∫
U ′

〈
F (y, g(y)), ν(y, g(y))

〉√
1 + |∇g(y)|22 dy

=
∫
U∩∂Ω
〈F, ν〉 dσ,

wie behauptet. Hier haben wir verwendet, dass die Gramsche Determinante zu Para-
metrisierung ψ : U ′ → U ∩ ∂Ω, y 7→ (y, g(y)) gegeben ist durch y 7→ 1 + |∇g(y)|22 (vgl.
Beispiel 3.19).
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Beweis von Satz 3.27. Sei Ω ein Kompaktum mit C1-Rand. Nach Satz 3.34 und aufgrund
der Kompaktheit von Ω existieren offene Mengen U1, . . . , Uk mit Ω ⊆

⋃k
i=1 Ui ⊆ V und

derart, dass für jedes i ∈ {1, . . . , k} und alle f ∈ C1
c (Ui,RN) gilt:

(3.12)
∫

Ω∩Ui
div f =

∫
Ui∩∂Ω

〈f, ν〉 dσ.

Sei {ηj | j ∈ N} eine den Mengen U1, . . . , Uk untergeordnete Zerlegung der Eins, so dass
ηj ∈ C∞c (Uκ(j)) gilt. Sei ferner F ∈ C1(V,RN ) und sei F j ∈ C1

c (Uκ(j),RN ) definiert durch
F j = ηjF für j ∈ N. Dann ist F über Ω integrierbar und 〈F, ν〉 über die Untermannigfal-
tigkeit ∂Ω integrierbar, da diese Funktionen dort stetig sind und die Mengen kompakt
sind. Es gilt wegen (3.12):∫

Ω
divF j =

∫
Ω∩Uκ(j)

divF j =
∫
Uκ(j)∩∂Ω

〈F j, ν〉 dσ =
∫
∂Ω
〈F j, ν〉 dσ.

Da F auf
⋃k
i=1 Ui mit

∑∞
j=1 F

j übereinstimmt, folgt nun mit dem Satz von Lebesgue auf
Ω und auf ∂Ω (Übung!)∫

Ω
divF =

∞∑
j=1

∫
Ω

divF j =
∞∑
j=1

∫
∂Ω
〈F j, ν〉 dσ =

∫
∂Ω
〈F, ν〉 dσ.

3.1 Der klassische Integralsatz von Stokes
Im Folgenden betrachten wir spezielle Mengen in R3.

Bemerkung 3.35. Ist f ∈ C2(R3,R3), so gilt div rot f = 0 und folglich gilt für jedes
C1-berandete Kompaktum Ω ⊆ R3 nach Satz 3.27∫

∂Ω
〈rot f, ν〉 dσ = 0.

Zu beachten ist hierbei, dass ∂Ω zwar eine lokal 2-dimensionale Fläche ist, aber keinen
„Rand“ besitzt. Im Folgenden wollen wir Flächen untersuchen, die einen solchen „Rand“
besitzen.

Definition 3.36 (Spezialfall einer berandeten Fläche). Seien U ⊆ R2 offen, ψ ∈
C2(U,R3) eine Parametrisierung und G ⊆ U ein C1-berandetes Kompaktum, so dass ∂G
das Bild einer Kurve γ ∈ C1([a, b], U) mit folgenden Eigenschaften ist:

(i) γ̇(t) 6= 0 für alle t ∈ [a, b],

(ii) γ|[a,b) ist injektiv und γ(a) = γ(b),

(iii) γ durchläuft den Rand von G gegen den Uhrzeigersinn, d.h. (γ̇2(t),−γ̇1(t))
|γ̇(t)|2 entspricht

dem äußeren Einheitsnormalenvektor an G im Punkt γ(t) ∈ ∂G.
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Dann ist offensichtlich γ|(a,b) eine Parametrisierung von ∂Gr{γ(a)}. Das BildM := ψ(G)
heißt Fläche in R3 mit orientiertem Rand, und man bezeichnet mit ∂M := ψ(∂G) den
Rand von M , eine 1-dimensionale Untermannigfaltigkeit (weil ∂G eine solche ist). Die
Kurve ψ ◦ γ|(a,b) ist eine Parametrisierung von ∂M r {ψ(γ(a))}. Man beachte, dass hier
∂M nicht topologisch zu verstehen ist (dann wäre ∂M = M) sondern im Sinne der
Theorie der Untermannigfaltigkeiten.

Satz 3.37. Mit den Bezeichnungen aus Definition 3.36 sei M eine Fläche mit orientier-
tem Rand. Ferner betrachten wir auf M das Einheitsnormalenfeld

ν : M → S2, ν(p) := ∂1ψ(x)× ∂2ψ(x)
|∂1ψ(x)× ∂2ψ(x)|2

für x = ψ−1(p).

Dann gilt für jede offene Menge V ⊆ R3 mit M ⊆ V und jedes Vektorfeld f ∈ C1(V,R3)

(3.13)
∫
M

〈rot f, ν〉 dσ =
∫
ψ◦γ

f =:
∫
∂M

〈f, τ〉 ds,

wobei τ den Tangentenvektor der Randkurve ψ ◦ γ bezeichne.

Bemerkung 3.38.

(a) Der Ausdruck
∫
ψ◦γ f ist das Kurvenintegral des Feldes f längs ψ ◦ γ.

(b) Nach Wahl von γ, liegt die Menge G stets links von einem Betrachter, der sich
entlang γ auf dem Rand von G bewegt.

(c) Satz 3.37 gilt allgemeiner für C1-berandete orientierbare zweidimensionale Unter-
mannigfaltigkeiten M des R3, d.h. falls auf M ein ENF existiert. Dies ist nicht
immer gegeben; z.B. besitzt das Möbiusband kein ENF.

(d) In der Theorie der Differentialformen auf Mannigfaltigkeiten wir der allgemeine
Satz von Stokes bewiesen, welcher keine Einschränkung der Raumdimensionen,
weniger Differenzierbarkeit (statt ψ ∈ C2) und schwächere Eigenschaften von ∂M
voraussetzt.

Wir benötigen für den Beweis folgendes Lemma

Lemma 3.39. Seien U ⊆ R2 offen, ψ ∈ C2(U,R3), V ⊆ R3 offen mit ψ(U) ⊆ V und
f ∈ C1(V,R3). Dann gilt

〈(rot f) ◦ ψ, ∂1ψ × ∂2ψ〉 = ∂1〈f ◦ ψ, ∂2ψ〉 − ∂2〈f ◦ ψ, ∂1ψ〉 auf U .

Beweis. Nachrechnen.

Beweis von Satz 3.37. Unter den Voraussetzungen und der Wahl der Parametrisierung
ψ gilt

gψ = |∂1ψ × ∂2ψ|22.
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Ferner ist das äußere ENF von G gegeben durch

µ = µ(t) = 1
|γ̇(t)|2

(
γ̇2(t)
−γ̇1(t)

)
.

Es gilt gγ(t) = |γ̇(t)|22. Wir setzen α := ψ ◦ γ. Es folgt mit dem Satz von Gauß (Satz 3.27)
und Lemma 3.39∫

M

〈rot f, ν〉 dσ =
∫
G

〈
(rot f) ◦ ψ, ∂1ψ × ∂2ψ

|∂1ψ × ∂2ψ|2

〉
|∂1ψ × ∂2ψ|

=
∫
G

〈(rot f) ◦ ψ, ∂1ψ × ∂2ψ〉 =
∫
G

(
∂1〈f ◦ ψ, ∂2ψ〉 − ∂2〈f ◦ ψ, ∂1ψ〉

)
=
∫
G

div
(
〈f ◦ ψ, ∂2ψ〉
−〈f ◦ ψ, ∂1ψ〉

)
=
∫
∂G

〈(
〈f ◦ ψ, ∂2ψ〉
−〈f ◦ ψ, ∂1ψ〉

)
, µ

〉
dσ

=
∫ b

a

(
〈f ◦ α, ∂2ψ ◦ γ〉

γ̇2

|γ̇|2
+ 〈f ◦ α, ∂1ψ ◦ γ〉

γ̇1

|γ̇|2

)
|γ̇|2

=
∫ b

a

〈f ◦ α, α̇〉 =
∫
α

f,

wie behauptet.
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4 Funktionentheorie

4.1 Erinnerung an die komplexen Zahlen
Definition 4.1. Betrachte R2 := R × R = {(a, b) | a, b ∈ R} mit der Addition und
Multiplikation:

(4.1)
(a1, b1) + (a2, b2) := (a1 + a2, b1 + b2)
(a1, b1) · (a2, b2) := (a1a2 − b1b2, a1b2 + b1a2)

für (a1, b1), (a2, b2) ∈ R2. Dann ist R2 ein kommutativer Körper mit Nullelement 0 :=
(0, 0) und Einselement 1 := (1, 0) (Nachrechnen!). Wir nennen ihn den Körper der
komplexen Zahlen (oder auch die komplexe Zahlenebene) und bezeichnen ihn mit C.
Das Einselement ist der erste kanonische Basisvektor von R2. Den zweiten kanonischen
Basisvektor bezeichnen wir mit i := (0, 1) und nennen ihn die imaginäre Einheit. Mit
obigen Multiplikationsregeln folgt sofort i2 = i · i = −1 (nachrechnen!). Wir schreiben
die Elemente von C = R2 in der Regel als reelle Linearkombinationen der kanonischen
Basisvektoren, also a+ bi = a+ ib = (a, b) für a, b ∈ R. Dann folgt (a1 + ib1)(a2 + ib2) =
a1a2 − b1b2 + i(a1b2 + a2b1).

Der reelle Körper R ist als der Untervektorraum R× {0} in C = R2 eingebettet. Wir
werden später zeigen, dass C der kleinste algebraisch vollständige Körper ist, der R
als Unterkörper enthält. Diese Tatsache ist einer der Gründe, die komplexen Zahlen
einzuführen.

Definition 4.2. Für z = a+ ib ∈ C mit a, b ∈ R sei

(a) Re(z) := a der Realteil von z, Im(z) := b der Imaginärteil von z,

(b) |z| :=
√
a2 + b2 der Betrag von z (ist dasselbe wie die Euklidische Norm |(a, b)|2),

(c) z := a− ib die zu z konjugiert komplexe Zahl. Die Abbildung C→ C, z 7→ z heißt
komplexe Konjugation.

Außerdem verwenden wir den Begriff

(d) Ċ := Cr {0}, die punktierte komplexe Zahlenebene.

Bemerkung 4.3. Der Körper C ist nicht angeordnet, denn in jedem angeordneten
Körper K ist x2 + y2 > 0 für x, y ∈ K \ {0}, während in C z.B. 12 + i2 = 0 gilt. Das
Symbol „<“ ergibt also nur für reelle Zahlen Sinn.

Satz 4.4. Für z, w ∈ C gilt:
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(a) Re(z) = z+z
2 , Im(z) = z−z

2i

(b) Re(z + w) = Re(z) + Re(w), Im(z + w) = Im(z) + Im(w)

(c) z + w = z + w, z · w = z · w, z = z

(d) |z|2 = |z|2 = z · z = Re(z)2 + Im(z)2

(e) |z · w| = |z| · |w|

(f) |Re(z)| ≤ |z|, |Im(z)| ≤ |z|

(g) |z + w| ≤ |z|+ |w| (Dreiecksungleichung)

(h)
∣∣|z| − |w|∣∣ ≤ |z − w|

Außerdem sind die Körperverknüpfungen C× C→ C und die Abbildungen z 7→ Re(z),
z 7→ Im(z), z 7→ z̄ und z 7→ |z| stetig.

Beweis. (a)–(h) folgen unmittelbar aus den Definitionen und wurden in Mathe I bewiesen.
Wir verwenden die Norm ‖(z, w)‖ := |z|+ |w| (Erinnerung: alle Normen in C× C = R4

sind äquivalent). Es folgt für zi, wi ∈ C, i = 1, 2:

|(z1 + w1)− (z2 + w2)| ≤ |z1 − z2|+ |w1 − w2| = ‖(z1, w1)− (z2, w2)‖

und

|z1w1 − z2w2| ≤ |z1||w1 − w2|+ |w2||z1 − z2| ≤ max{|z1|, |w2|}‖(z1, w1)− (z2, w2)‖.

Das zeigt die lokale Lipschitz-Stetigkeit der Körperverknüpfungen. Re und Im sind die
reell linearen Koordinatenprojektionen in R2 und somit stetig. z̄ = z − 2i Im(z) zeigt,
dass z 7→ z̄ stetig ist. Die Stetigkeit von z 7→ |z| folgt aus (h).

Bemerkung 4.5. (a) Aus Satz 4.4 folgt∣∣∣∣zw
∣∣∣∣ = |z|
|w|

und
(
z

w

)
= z

w
für z, w ∈ C, w 6= 0.

(b) Für z ∈ Ċ gilt 1
z

= z

|z|2
.

(c) Aus Satz 4.4(g) und (h) folgt
∣∣|z| − |w|∣∣ ≤ |z ± w| ≤ |z|+ |w| für z, w ∈ C.

Definition 4.6. (a) Für z ∈ C und ε > 0 sei

Br(z) := {w ∈ C | |z − w| < r} (offene r-Kreisscheibe um z)
Br(z) := {w ∈ C | |z − w| ≤ r} (abgeschlossene r-Kreisscheibe um z).

(b) Eine Teilmenge M ⊆ C heißt beschränkt, falls R > 0 existiert mit M ⊆ BR(0).
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Satz 4.7. Sind z, w ∈ C, z 6= w, so ist Bε(z) ∩Bε(w) = ∅ für ε ∈ (0, |z−w|2 ].

Beweis. Siehe Mathe I.

Definition 4.8. Sei (cn)n∈N0 ⊆ C eine Folge. Für z, z0 ∈ C bezeichnen wir eine Reihe
der Gestalt

(4.2)
∞∑
n=0

cn(z − z0)n

Potenzreihe und nennen z0 Entwicklungspunkt. Wir definieren den Konvergenzradius der
Potenzreihe:

(4.3) ρ :=
(

lim sup
n→∞

n
√
|cn|
)−1

∈ [0,∞].

Hierbei verwenden wir die Konvention 1
∞ := 0 und 1

0 :=∞.

Satz 4.9. Seien (cn)n∈N0 ⊆ C eine Folge, z0 ∈ C und ρ der Konvergenzradius der
formalen Reihe p(z) :=

∑∞
n=0 cn(z − z0)n. Dann gilt:

(a) Für alle r ∈ [0, ρ) konvergiert p(z) absolut gleichmäßig auf Br(z0) und die Abbildung
p : Br(z0)→ C ist gleichmäßig stetig.

(b) Für alle z ∈ Bρ(z0) konvergiert p(z) absolut und die Abbildung p : Bρ(z0)→ C ist
stetig.

(c) Für z ∈ C \Bρ(z0) divergiert p(z).

(d) Für z ∈ ∂Bρ(z0) kann keine allgemeingültige Aussage über die Konvergenz der
Reihe p(z) gemacht werden.

Beweis. Siehe Mathe I.

Definition 4.10. (a) Wir definieren die komplexe Exponentialfunktion als

exp: C→ C, z 7→ exp(z) :=
∞∑
n=0

zn

n! ,

denn diese Reihe hat den Konvergenzradius ∞. Wir schreiben auch ez anstelle von
exp(z).

(b) Wir definieren die Sinus- und Kosinusfunktion auf C als

sin : C→ C, z 7→ sin(z) := 1
2i
(
eiz − e−iz

)
=
∞∑
n=0

(−1)n z2n+1

(2n+ 1)!

cos : C→ C, z 7→ cos(z) := 1
2
(
eiz + e−iz

)
=
∞∑
n=0

(−1)n z2n

(2n)! .
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Satz 4.11. (a) Für z1, z2 ∈ C gilt: ez1+z2 = ez1ez2.

(b) Für alle z ∈ C gilt
eiz = cos z + i sin z.

Im Spezialfall z = ϕ ∈ R nennt man diese Beziehung die Eulersche Formel.
Insbesondere ist |eiϕ| = 1 für alle ϕ ∈ R.

(c) Aus (a) und (b) folgt für alle z ∈ C:

ez+2πi = eze2πi = ez(cos(2π) + i sin(2π)) = ez,

d.h. die Funktion exp ist 2πi-perodisch.

Beweis. Siehe Mathe I.

Bemerkung 4.12 (Polarkoordinatendarstellung der komplexen Zahlen). Für jedes z =
a+ ib ∈ Ċ existiert genau ein ϕ ∈ (−π, π] und r > 0 mit z = reiϕ. Dabei ist |z| = r und

ϕ = Arg(z) :=


arccos

(
a

|z|

)
, für b ≥ 0,

− arccos
(
a

|z|

)
, für b < 0,

heißt der Hauptwert des Arguments. Insbesondere folgt, dass für jedes r > 0 die Abbildung

{z ∈ C | |z| = r} → (−π, π], z 7→ Arg(z)

bijektiv ist.

4.2 Holomorphe Funktionen und Kurvenintegrale in C
Definition 4.13. Ist G ⊆ C offen und nichtleer, f : G→ C eine Abbildung und z0 ∈ G,
so heißt f (komplex) differenzierbar in z0, wenn

lim
z→z0

f(z)− f(z0)
z − z0

existiert. Der Grenzwert wird mit f ′(z0) bezeichnet und heißt komplexe Ableitung von f
in z0.

Bemerkung 4.14. Aufgrund der Identifikation von C mit R2 können wir eine Abbildung
f : C → C auch als Abbildung f : R2 → R2 interpretieren. Ist die Abbildung f =
(u, v) : R2 → R2 total differenzierbar in einem Punkt z = (x, y) ∈ R2, so gilt

Jf (z) =
(
ux(z) uy(z)
vx(z) vy(z)

)
.

Hier schreiben wir ux anstelle von ∂1u und uy anstelle von ∂2u und entsprechend für v.
Im Folgenden wollen wir den Zusammenhang zwischen „f ist komplex differenzierbar“
und „f ist total differenzierbar“ untersuchen.
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Definition 4.15. Eine Abbildung T : C → C heißt komplex linear, wenn T bezüglich
des Skalarkörpers C linear auf dem komplexen Vektorraum C ist, d.h. wenn T [z + λw] =
Tz + λTw für alle z, w, λ ∈ C gilt. Insbesondere ist dann T auch reell linear, d.h. linear
bezüglich des Skalarkörpers R.

Bemerkung 4.16.

(a) Ist f : R2 → R2 stetig differenzierbar, so ist die Ableitung df(a) reell linear für alle
a ∈ R2.

(b) Die komplexe Konjugation ist reell linear, denn für alle r ∈ R und z, w ∈ C gilt:

z + r · w = z + r · w = z + r · w = z + rw.

Es gilt aber für z ∈ Ċ: iz = īz̄ = −iz̄ 6= iz̄, d.h. die komplexe Konjugation ist nicht
komplex linear.

Beachten Sie bitte die nachträgliche Ergänzung (Periodizität von exp) in Satz 4.11(c).

Lemma 4.17. Es sei T : C→ C eine reell lineare Abbildung. Dann sind äquivalent

(i) T ist komplex linear;

(ii) T i = iT1;

(iii) Es existiert ein z ∈ C mit Tw = zw für alle w ∈ C.

Insbesondere ist T als lineare Abbildung R2 → R2 eine Drehstreckung, d.h. T = r
( cosϕ − sinϕ

sinϕ cosϕ
)

mit r ∈ [0,∞) und ϕ ∈ (−π, π].

Beweis. Die Implikationen (i)⇒(ii) und (iii)⇒(i) sind offensichtlich. Wir zeigen (ii)⇒(iii):
Sei z := T1. Es folgt für w = a+ ib mit a, b ∈ R:

zw = az + ibz = aT1 + ibT1 = aT1 + bT i = T [a+ ib] = Tw.

Schließlich sei z = reiϕ mit (r, ϕ) ∈ [0,∞)× (−π, π] gemäß Bemerkung 4.12. Es folgt

zw = r(cosϕ+ i sinϕ)(a+ ib) = r
(
(a cosϕ− b sinϕ) + i(a sinϕ+ b cosϕ)

)
,

also die letzte Behauptung.

Satz 4.18. Es seien G ⊆ C offen und nichtleer, f : G → C eine Abbildung und z0 =
x0 + iy0 ∈ G. Sei ferner u := Re(f) und v := Im(f). Dann sind äquivalent:

(i) f ist in z0 komplex differenzierbar.

(ii) f ist in z0 total differenzierbar und das totale Differential df(z0) : C → C ist
C-linear.

61



(iii) f ist in z0 total differenzierbar und es gelten die Cauchy-Riemann-Differentialgleichungen:

(4.4)
ux(z0) = vy(z0),
vx(z0) = −uy(z0).

Sind diese Bedingungen erfüllt, so gilt

df(z0)z = f ′(z0)z für alle z ∈ C

und
f ′(z0) = ux(z0) + ivx(z0) = vy(z0)− iuy(z0) ∈ C.

Beweis. „(i)⇒ (ii)“: Durch Th = f ′(z0)h für h ∈ C wird eine C-lineare Abbildung
definiert und es gilt:

lim
h→0
h∈C

|f(z0 + h)− f(z0)− Th|
|h|

= lim
h→0

∣∣∣∣f(z0 + h)− f(z0)
h

− f ′(z0)
∣∣∣∣ = 0.

„(ii)⇒ (i)“: Da T := df(z0) C-linear ist, existiert λ ∈ C mit Th = λh für alle h ∈ C.
Nach Voraussetzung gilt dabei

0 = lim
h→0

|f(z0 + h)− f(z0)− Th|
|h|

= lim
h→0

∣∣∣∣f(z0 + h)− f(z0)
h

− λ
∣∣∣∣ .

Es folgt also, dass f in z0 komplex differenzierbar ist mit f ′(z0) = λ.
„(ii)⇔ (iii)“ T := df(z0) wird dargestellt durch die Jacobimatrix(

ux(z0) uy(z0)
vx(z0) vy(z0)

)
.

Also gilt für die 1 ∈ C mit der Darstellung ( 1
0 ) und i ∈ C mit der Darstellung ( 0

1 ):

T1 = T

(
1
0

)
=
(
ux(z0)
vx(z0)

)
= ux(z0) + ivx(z0)

und somit iT1 = −vx(z0) + iux(z0) und

T i = T

(
0
1

)
=
(
uy(z0)
vy(z0)

)
= uy(z0) + ivy(z0).

Folglich gilt:

(4.4) ⇔ T i = iT1 Lemma 4.17⇔ T ist komplex linear.

Beispiel 4.19. (a) Die komplexe Konjugation ist in keinem Punkt z ∈ C komplex
differenzierbar: Sei f : C→ C, f(z) = z. Dann gilt f(x+ iy) = x− iy für x, y ∈ R,
also u(x, y) = Re(f)(x, y) = x und v(x, y) = Im(f)(x, y) = −y. Es ist dann
ux = 1 6= −1 = vy(x, y). Folglich sind die Cauchy-Riemann-Differentialgleichungen
für kein z ∈ C erfüllt und somit ist f nirgendwo komplex differenzierbar.
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(b) Die Abbildung z 7→ Re(z) und z 7→ Im(z) sind nirgendwo in C komplex differen-
zierbar (Übung).

Lemma 4.20. Es seien G ⊆ C offen und nichtleer, f, g : G → C Abbildungen, welche
komplex differenzierbar in z0 ∈ G sind. Dann gilt:

(a) f und g sind stetig in z0.

(b) f + g ist komplex differenzierbar in z0 mit (f + g)′(z0) = f ′(z0) + g′(z0).

(c) Für λ ∈ C ist λf komplex differenzierbar in z0 mit (λf)′(z0) = λf ′(z0).

(d) f · g ist komplex differenzierbar in z0 mit

(f · g)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0).

(e) Ist g(z0) 6= 0, so ist die Abbildung f
g

: {z ∈ G | g(z) 6= 0} → C komplex differenzier-
bar in z0 und es gilt (

f

g

)′
= f ′(z0)g(z0)− f(z0)g′(z0)

g2(z0) .

(f) Ist H ⊆ C eine offene Menge mit f(G) ⊆ H, h : H → C eine Abbildung so
dass h komplex differenzierbar in h(f(z0)) ist, dann ist h ◦ f : G → C komplex
differenzierbar in z0 und es gilt

(h ◦ f)′(z0) = h′(f(z0))f ′(z0).

Beweis. Wie in Mathe I.

Definition 4.21. Es sei G ⊆ C offen und nichtleer. Eine Abbildung f : G → C heißt
holomorph, wenn sie in jedem Punkt z ∈ G komplex differenzierbar ist. Eine in ganz C
holomorphe Funktion heißt ganze Funktion.

Satz 4.22. Seien (cn)n∈N0 ⊆ C und ρ > 0 der zugehörige Konvergenzradius. Sei ferner
z0 ∈ C und f : Bρ(z0)→ C gegeben durch f(z) =

∑∞
n=0 cn(z − z0)n. Dann gilt:

(a) f ist holomorph in Bρ(z0) und es gilt

f ′(z) =
∞∑
n=1

ncn(z − z0)n−1 für z ∈ Bρ(z0).

(b) f ist auf Bρ(z0) beliebig oft komplex differenzierbar und es gilt cn = f (n)(z0)
n! .
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Beweis. Zu (a): Ohne Einschränkungen sei z0 = 0. Nach Mathe I besitzt die Potenzreihe∑∞
n=1 ncnz

n−1 ebenfalls den Konvergenzradius ρ. Sei nun B := Bρ(0) und p ∈ B und

hn : C→ C definiert durch hn(z) = zn−1 + zn−2p+ . . .+ zpn−2 + pn−1.

Für s ∈ (|p|, ρ) und z ∈ Bs(0) gilt dann
∞∑
n=1

|cnhn(z)| ≤
∞∑
n=1

|cn|nsn−1 <∞.

Somit konvergiert die Funktionenreihe
∑∞

n=1 cnhn gemäß Satz 4.9 gleichmäßig auf Bs(0)
gegen eine stetige Funktion h : Bs(0)→ C. Es folgt also für z ∈ Bs(0):

f(z)− f(p) = lim
n→∞

n∑
k=1

ck(zk − pk) = lim
n→∞

n∑
k=1

ck(z − p)hk(z) = (z − p)h(z).

Somit existiert

f ′(p) = lim
z→p

f(z)− f(p)
z − p

= lim
z→p

h(z) = h(p) =
∞∑
n=1

cnhn(p) =
∞∑
n=1

ncnp
n−1

wie behauptet.
(b) folgt nun durch wiederholte Anwendung von (a).

Bemerkung 4.23. Eine Funktion f : U → C auf einer offenen Menge U ⊆ C wird
auch analytisch genannt, wenn es zu jedem z0 ∈ U ein r ∈ (0, dist(z0, ∂U)] gibt, so
dass f in Br(z0) durch eine Potenzreihe mit Entwicklungspunkt z0 dargestellt werden
kann (und somit beliebig oft differenzierbar ist). Die Aussage von Satz 4.22 liefert, dass
analytische Funktionen auch holomorph sind. Die folgenden Abschnitte werden sich damit
beschäftigen, zu zeigen, dass jede holomorphe Funktion analytisch ist, also lokal als Reihe
geschrieben werden kann und somit beliebig oft differenzierbar ist.
Beispiel 4.24. (a) Alle komplexen Polynome sind in C holomorph. Eine rationale

Funktion f = P
Q

für zwei komplexe Polynome P,Q ist holomorph in C \NQ, wobei
NQ = {z ∈ C | Q(z) = 0} ⊆ C die Nullstellenmenge von Q ist.

(b) exp, sin, cos, sinh und cosh sind nach Satz 4.22 holomorph in C. Die Ableitungen
haben dieselbe Form wie aus der reellen Analysis bekannt.

(c) Die Funktion f : C→ C, f(z) = exp
(
− 1
z2

)
für z 6= 0 und f(0) = 0 ist holomorph

in Ċ, aber sie ist nicht komplex differenzierbar in 0. Es gilt jedoch: f |R ∈ C∞(R)!
(Übung).

Definition und Satz 4.25. Seien a < b und f : I → C stetig. Dann sind Re f und Im f
auch stetig. Wir definieren das Riemann-Integral von f über I als∫ b

a

f :=
∫ b

a

Re f + i
∫ b

a

Im f.

Es hat die folgenden Eigenschaften:
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(a) Die Abbildung C([a, b],C)→ C, f 7→
∫ b

a

f , ist komplex linear.

(b)
∫ b

a

f =
∫ b

a

f̄ .

(c) Es gelten die Hauptsätze der Differential- und Integralrechnung, genauso wie für
reellwertige Funktionen.

(d) Ist ψ : [a, b]→ R stückweise stetig differenzierbar (per definitionem impliziert dies
Stetigkeit), so gilt für eine stetige Funktion g : ψ([a, b])→ C:∫ b

a

(g ◦ ψ)ψ′ =
∫ ψ(b)

ψ(a)
g.

(e)
∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Beweis. Die Paragraphen (a)–(d) beweist man mit den entsprechenden Resultaten für
reellwertige Funktionen, angewendet auf Real- und Imaginärteil. Wir zeigen (e): Der Fall∫ b
a
f = 0 ist trivial. Für

∫ b
a
f 6= 0 sei ϕ := −Arg

(∫ b
a
f
)
. Es folgt∣∣∣∣∫ b

a

f

∣∣∣∣ = eiϕ
∣∣∣∣∫ b

a

f

∣∣∣∣ e−iϕ = eiϕ
∫ b

a

f = Re
(

eiϕ
∫ b

a

f

)
=
∫ b

a

Re
(
eiϕf

)
≤
∫ b

a

∣∣eiϕf
∣∣ =

∫ b

a

|f | .

Definition 4.26. Sei U ⊆ C offen und nichtleer und γ : [a, b] ⊆ R → U eine stetige
Abbildung, auch Weg genannt.
(a) Wir definieren |γ| := γ([a, b]) als die Spur von γ.

(b) γ heißt Integrationsweg, wenn γ stückweise stetig differenzierbar ist, d.h. wenn eine
Zerlegung a = t0 < t1 < . . . < tm = b von [a, b] existiert derart, dass γ|[tk−1,tk] stetig
differenzierbar ist für k = 1, . . . ,m.

(c) Ist γ ein Integrationsweg wie in (b), so setzen wir

L(γ) =
m∑
k=1

∫ tk

tk−1

|γ̇(t)| dt (Länge von γ)

Ist ferner f : |γ| → C stetig, so definieren wir das (komplexe) Wegintegral von f
längs γ durch ∫

γ

f :=
∫
γ

f(z) dz :=
m∑
k=1

∫ tk

tk−1

f(γ(t))γ̇(t) dt.

Man kann nachweisen, dass diese Definition unabhängig ist von der Wahl der
Zerlegung.
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(d) Wir nennen einen Weg γ geschlossen, falls γ(b) = γ(a) gilt.

Beispiel 4.27.

(a) Die Verbindungsstrecke γ : [0, 1]→ C, γ(t) := (1− t)z + tw zwischen zwei Punkten
z, w ∈ C ist ein Integrationsweg. Man schreibt auch [z, w] anstelle von γ bzw. |γ|
für den Weg γ. Es gilt γ̇(t) = w − z für t ∈ [0, 1] und∫

[z,w]
dx =

∫ 1

0
(w − z) dt = w − z und L([z, w]) =

∫ 1

0
|w − z| dt = |w − z|.

(b) Seien a ∈ C und r > 0 und γ : [0, 2π]→ C definiert durch γ(t) = a+reit. Dann ist γ
ein geschlossener Integrationsweg und es gilt γ̇(t) = ireit, also L(γ) =

∫ 2π
0 r dt = 2πr.

Ferner gilt für n ∈ Z wegen Satz 4.11(c):

∫
γ

(z − a)n dz = irn+1
∫ 2π

0
ei(n+1)t dt =


rn+1 ei(n+1)t

n+ 1

∣∣∣∣2π
0

= 0, n 6= −1,

i
∫ 2π

0
dt = 2πi, n = −1.

Im Falle dieses speziellen Kreisweges schreiben wir anstatt
∫
γ
im Folgenden auch∫

∂Br(a). Also insbesondere
∫
∂B1(0)

1
z

dz = 2πi.

(c) Ist U ⊆ C offen und γ : [a, b]→ C ein geschlossener Integrationsweg in C, so dass
|γ| = ∂U gilt, dann sagen wir auch, γ durchläuft ∂U in positivem Sinne oder γ ist
ein positiv orientierter Randweg, wenn U im Sinne der Laufrichtung von γ immer
nur links von γ liegt, d.h. dass bis auf endlich viele t ∈ [a, b] jeweils γ(t)+εiγ̇(t) ∈ U
und γ(t)− εiγ̇(t) ∈ CrU für hinreichend kleine ε > 0 gilt. Dies trifft insbesondere
auf γ aus (b) als Randweg von Br(a) zu.

Satz 4.28 (Zusammenhang zwischen dem reellen und dem komplexen Kurvenintegral).
Sei γ : [a, b]→ C ein stetig differenzierbarer Weg und sei f : |γ| → C stetig. Seien ferner
u := Re(f) und v := Im(f). Dann gilt∫

γ

f =
∫
γ

(
u
−v

)
+ i
∫
γ

(
v
u

)
,

wobei die Integrale auf der rechten Seite reelle Kurvenintegrale im Sinne der Mathe II
sind. Dabei fassen wir γ als Kurve in R2 auf.

Beweis. Dies folgt direkt aus

Re
(
(f ◦ γ)γ̇

)
= (u ◦ γ) Re γ̇ − (v ◦ γ) Im γ̇,

Im
(
(f ◦ γ)γ̇

)
= (u ◦ γ) Im γ̇ + (v ◦ γ) Re γ̇

und γ̇ =
( Re γ̇

Im γ̇

)
.
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Satz und Definition 4.29. Sei γ : [a, b]→ C ein Integrationsweg. Dann gilt:

(a) Die Abbildung C(|γ|,C)→ C, f 7→
∫
γ
f , ist komplex linear.

(b) Für γ−1(t) := γ(a + b − t), t ∈ [a, b], und f ∈ C(|γ|,C) gilt
∫
γ−1 f = −

∫
γ
f und

L(γ−1) = L(γ).

(c) Ist η : [c, d] → C ein weiterer Integrationsweg, so dass η(c) = γ(b) gilt, so ist
γ · η : [a, b + |d − c|] → C ein Integrationsweg, definiert durch γ · η(t) := γ(t) für
t ∈ [a, b] und γ · η(t) := η(t− b+ c) für t ∈ (b, b+ |d− c|]. Es gilt∫

γ·η
h =

∫
γ

h+
∫
η

h,

für stetige Funktionen h : |γ| ∪ |η| → C. Ferner gilt L(γ · η) = L(γ) + L(η).

(d) Ist ∆ ein abgeschlossenes Dreieck in C, d.h. die konvexe Hülle dreier Punkte
z0, z1, z2, so bezeichnen wir mit ∂∆ den geschlossenen Dreiecksweg [z0, z1] · [z1, z2] ·
[z2, z0], welcher den Rand von ∆ durchläuft.

Beweis. Leichte Übung.

Satz 4.30. Sei γ ein Integrationsweg.

(a) Für eine stetige Funktion f : |γ| → C gilt∣∣∣∣∫
γ

f

∣∣∣∣ ≤ L(γ) max
|γ|
|f | (Standardabschätzung).

(b) Seien fn : |γ| → C, n ∈ N stetige Funktionen derart, dass die Folge (fn)n gleichmä-
ßig gegen f : |γ| → C konvergiert. Dann ist∫

γ

f = lim
n→∞

∫
γ

fn.

Beweis. Ähnlich zu den analogen Aussage in Mathe I bzw. Mathe II., unter Verwendung
von Definition 4.26.

Definition 4.31. Sei U ⊆ C offen und nichtleer und f : U → C eine Funktion. Eine
holomorphe Funktion F : U → C heißt Stammfunktion von f in U , falls F ′ = f ist.

Definition 4.32. Eine offene, nichtleere Teilmenge U ⊆ C heißt wegzusammenhängend,
wenn zu je zwei Punkten z, w ∈ U ein Integrationsweg γ : [0, 1]→ U existiert mit γ(0) = z
und γ(1) = w. In diesem Fall nennen wir U ein Gebiet.

Satz 4.33. Sei U ⊆ C offen und nichtleer, f : U → C eine Funktion und F : U → C
eine Stammfunktion von f . Dann gilt:
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(a) Ist γ : [a, b]→ U ein Integrationsweg, so gilt∫
γ

f = F (γ(b))− F (γ(a)).

Insbesondere gilt dann
∫
γ
f = 0, falls γ geschlossen ist.

(b) Ist U ein Gebiet, so unterscheidet sich jede weitere Stammfunktion von f nur um
eine Konstante von F .

Beweis. Zu (a): Ohne Einschränkungen sei γ stetig differenzierbar (durch stückweises
betrachten von γ). Ist h := F ◦ γ : [a, b]→ C, so gilt ḣ = (f ◦ γ)γ̇, also∫

γ

f =
∫ b

a

(f ◦ γ)γ̇ = h(b)− h(a) = F (γ(b))− F (γ(a)).

Zu (b): Sei G : U → C eine weitere Stammfunktion von f und sei z0 ∈ U fest gewählt.
Dann gilt für beliebiges z ∈ U mit einem Integrationsweg γ : [a, b]→ U von z0 nach z:

F (z)− F (z0) (a)=
∫
γ

f = G(z)−G(z0).

Es folgt (b).

Korollar 4.34. Ist G ⊆ C ein Gebiet und f : G→ C holomorph mit f ′ ≡ 0 auf G, so
ist f konstant in G.

Beweis. Dies folgt direkt aus Satz 4.33(b), da 0 eine Stammfunktion von f ′ ist.

Definition 4.35. Eine offene Menge G ⊆ C heißt Sterngebiet, wenn es z0 ∈ G gibt mit
[z0, z] ⊆ G für alle z ∈ G. In diesem Fall nennt man z0 auch ein Sternzentrum von G
(vgl. Mathe II).

Bemerkung und Beispiel 4.36. (a) Jeder offene Ball Br(a), a ∈ C und r > 0 ist
ein Sterngebiet und jeder Punkt z ∈ Br(a) ist ein Sternzentrum.

(b) Jedes Sterngebiet in C ist ein Gebiet.

(c) Die geschlitzte Ebene C \ {x ∈ R | x ≤ 0} ist ein Sterngebiet und jeder Punkt
z ∈ C mit Im(z) = 0 und Re(z) > 0 ist ein Sternzentrum.

(d) Ċ ist kein Sterngebiet, denn für jedes z0 ∈ Ċ ist [z0,−z0] 6⊆ Ċ.

Beachten Sie bitte die Ergänzung Beispiel 4.27(c), in der der Begriff im positiven Sinne
durchlaufener Rand bzw. positiv orientierter Randweg erklärt wird.

Satz und Definition 4.37. Sei G ⊆ C ein Gebiet und f : G→ C stetig.

(a) Äquivalent sind
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(i) f besitzt eine Stammfunktion.
(ii)

∫
γ
f = 0 für jeden geschlossenen Integrationsweg γ in G.

Gilt dies, so nennen wir f integrabel (in G).

(b) Ist G ein Sterngebiet, so ist f genau dann integrabel, wenn gilt:

(4.5)
∫
∂∆
f = 0 für alle ∆ ⊆ G.

(c) Erweitertes Lemma von Goursat: Ist G ein Sterngebiet und f holomorph, bis auf
möglicherweise einen Punkt, dann gilt (4.5). Insbesondere ist f integrabel.

Beispiel 4.38.

(a) Ist n ∈ Z \ {−1}, so besitzt die Funktion Ċ → C, z 7→ zn die Stammfunktion
z 7→ zn+1

n+1 auf Ċ. Mit Satz 4.33 folgt nun
∫
γ
zn dz = 0 für jeden geschlossenen

Integrationsweg γ in Ċ. Insbesondere ist also
∫
∂Br(0) z

n dz = 0 für r > 0, wie bereits
in Beispiel 4.27(b) berechnet.

(b) Die Funktion Ċ→ C, z 7→ 1
z
ist nicht integrabel in Ċ, da

∫
∂Br(0)

1
z

dz = 2πi 6= 0 für
r > 0 nach Beispiel 4.27(b).

Beweis von Satz und Definition 4.37. (a): „(i)⇒(ii)“ folgt aus Satz 4.33.
„(ii)⇒(i)“ Sei z0 ∈ G beliebig. Zu z ∈ G existiert dann ein Integrationsweg γ von z0

nach z. Ist ferner η ein weiterer Integrationsweg von z0 nach z, so ist γ · η−1 geschlossen
und daher

(4.6)
∫
γ

f −
∫
η

f =
∫
γ·η−1

f = 0

nach Voraussetzung. Wir definieren nun F : G → C durch F (z) =
∫
γ
f , wobei γ ein

beliebiger Integrationsweg von z0 nach z ist. Dann ist F aufgrund der durch (4.6)
Unabhängigkeit der Wahl des Weges von z0 nach z wohldefiniert. Wir zeigen nun, dass
F eine Stammfunktion von f ist. Seien dazu z ∈ G fest und δ > 0 mit Bδ(z) ⊆ G und γ
ein Integrationsweg von z0 nach z. Für w ∈ Bδ(z) ist dann γ · [z, w] ein Integrationsweg
von z0 nach w, also ist

F (w)− F (z) =
∫
γ·[z,w]

f −
∫
γ

f =
∫

[z,w]
f =

∫
[z,w]

(f − f(z)) + f(z)(w − z)

und somit∣∣∣∣F (w)− F (z)
w − z

− f(z)
∣∣∣∣ = |w − z|−1

∣∣∣∣∫
[z,w]

(f − f(z))
∣∣∣∣ Satz 4.30(a)

≤ max
[z,w]
|f − f(z)| → 0

für w → z aufgrund der Stetigkeit von f in z. Es folgt F ′(z) = f(z) wie behauptet.
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(b): Da jeder Dreiecksweg ∂∆ in G geschlossen ist, folgt (4.5) aus der Integrabilität
von f . Gelte umgekehrt (4.5) und sei F : G→ C definiert durch F (z) :=

∫
[z0,z] f . Dann

folgt ähnlich wie zuvor F ′ = f auf G.
(c): Wir präsentieren eine Beweisskizze. Für einen ausführlichen Beweis, siehe [14,

Kap. III, Sätze 1.1 und 1.2]. Alle folgenden Dreieckswege werden als Randwege im
positiven Sinn durchlaufen.

Sei zunächst f in G holomorph. Wir zerteilen ∆0 := ∆ in vier Teildreiecke ∆1
1, . . . ,∆4

1
indem wir die Seitenmitten verbinden. Da die im Innern von ∆0 liegenden neuen Seiten
jeweils als Ränder zweier angrenzender Dreiecke in gegenläufigem Sinne durchlaufen
werden, folgt ∣∣∣∣∫

∂∆
f

∣∣∣∣ =

∣∣∣∣∣
4∑

k=1

∫
∂∆k

1

f

∣∣∣∣∣ ≤ 4 max
k

∣∣∣∣∣
∫
∂∆k

1

f

∣∣∣∣∣ = 4
∣∣∣∣∫
∂∆1

f

∣∣∣∣ ,
wo wir ∆1 ∈ {∆1

1, . . . ,∆4
1} so ausgewählt haben, dass dort der maximale Absolutwert des

Integrals angenommen wird. Nun verwenden wir ∆1 als Ausgangsdreieck und wiederholen
die Zerteilung. Sukzessive finden wir eine Folge ∆0 ⊇ ∆1 ⊇ ∆2 ⊇ . . . mit∣∣∣∣∫

∂∆
f

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂∆n

f

∣∣∣∣(4.7)

L(∂∆n) = 2−nL(∂∆).(4.8)

Da ∆ kompakt ist und limn→∞ diam ∆n = 0 gilt, folgt
⋂∞
n=1 ∆n = {z0} für ein z0 ∈ ∆.

Die komplexe Differenzierbarkeit von f in z0 liefert eine stetige Funktion h : G→ C mit
h(z0) = 0 und f(z) = f(z0)+f ′(z0)(z−z0)+h(z)(z−z0) für alle z ∈ G. In dieser Summe
sind die ersten beiden Terme integrabel. Zusammen mit der Standardabschätzung folgt
für alle n ∈ N:∣∣∣∣∫

∂∆
f

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂∆n

h(z)(z − z0) dz
∣∣∣∣ wegen (4.7)

≤ 4nL(∂∆n)2 max
∆n

|h| Standardabschätzung

= max
∆n

|h| wegen (4.8).

Wegen limn→∞max∆n|h| = 0 folgt
∫
∂∆ f = 0.

Nun erlauben wir, dass f in einem z0 ∈ G nicht komplex differenzierbar, sondern
lediglich stetig ist. Falls z0 ein Eckpunkt von ∆ ist, dann Zerteilen wir ∆ wie in Abb. 4.1.
Es gilt dann nach dem ersten Teil

∫
∂∆2

f =
∫
∂∆3

f = 0, also
∫
∂∆ f =

∫
∂∆1

f . Da wir z1

und z′1 beliebig nahe an z0 wählen können, folgt aus der Standardabschätzung
∫
∂∆ f = 0.

Falls z0 auf einer Seite von ∆ liegt, dann zerteilen wir ∆ wie in Abb. 4.2 angedeutet und
wenden das vorige Ergebnis auf die entstandenen Dreiecke an. Und falls z0 im Innern von
∆ liegt, dann zerteilen wir ∆ wie in Abb. 4.3 angedeutet und wenden den vorangehenden
Fall an.
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4.3 Der komplexe Logarithmus
Sei U ⊆ C eine offene Teilmenge, so dass exp |U injektiv ist. Da die Exponentialfunktion
2πi-periodisch ist, muss notwendigerweise U 6= C gelten. Dann existiert die Umkehr-
funktion g := exp−1 auf V := exp(U). Falls V offen, g stetig und z0 ∈ V ist, dann
folgt

(4.9) g(z)− g(z0)
z − z0

= g(z)− g(z0)
exp(g(z))− exp(g(z0))

z→z0−→ 1
exp′(g(z0)) = 1

exp(g(z0)) = 1
z0
.

Es folgt g′(z) = 1/z in V . Dies liefert die Motivation, Umkehrungen der Exponential-
funktion als Stammfunktionen von 1/z zu erhalten.

Definition 4.39. Ist G ⊆ C ein Gebiet, so heißt eine holomorphe Funktion g : G→ C
Zweig des Logarithmus (auf G), wenn exp(g(z)) = z für alle z ∈ G gilt.

Satz 4.40. Seien G ⊆ Ċ und g : G→ C eine Funktion.

(a) Ist g ein Zweig des Logarithmus auf G, so ist für k ∈ Z auch z 7→ g(z) + 2πik ein
Zweig des Logarithmus auf G und jeder Zweig des Logarithmus ist von dieser Form.

(b) g ist genau dann ein Zweig des Logarithmus, wenn g auf G holomorph ist mit
g′(z) = 1

z
für alle z ∈ G und exp(g(a)) = a für mindestens ein a ∈ G gilt.

(c) Auf G existiert genau dann ein Zweig des Logarithmus, wenn z 7→ 1
z
in G integrabel

ist. Insbesondere existiert auf jedem in Ċ enthaltenen Sterngebiet ein Zweig des
Logarithmus (nach Satz und Definition 4.37 (c)). Auf Ċ existiert jedoch kein Zweig
des Logarithmus (siehe Beispiel 4.38 (b)).

Beweis. Zu (a): Für z ∈ G und k ∈ Z ist

eg(z)+2πik = eg(z)e2πik = eg(z).

Ist umgekehrt f ein weiterer Zweig des Logarithmus auf G und h := f − g, so ist
exp(h(z)) = exp(f(z))

exp(g(z)) = z
z

= 1 für z ∈ G. Da G ein Gebiet und h stetig ist, folgt
h(z) = 2πik für ein festes k ∈ Z und alle z ∈ G, d.h. f = g + 2πik auf G (Übung!).

•
z0 z1

z′1

∆1

∆2 ∆3

Abbildung 4.1: Zum Beweis von Satz und Definition 4.37(c)
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•
z0

∆1 ∆2

Abbildung 4.2: Zum Beweis von Satz und Definition 4.37(c)

z0
•

∆1 ∆2

Abbildung 4.3: Zum Beweis von Satz und Definition 4.37(c)

Zu (b): „⇒“: Wegen exp ◦g = id auf G ist g injektiv und die Aussage folgt aus (4.9).
„⇐“: Für f : G→ C, f(z) := exp(g(z))

z
, gilt

f ′(z) = exp(g(z))
=1︷ ︸︸ ︷

g′(z)z− exp(g(z))
z2 = 0 für alle z ∈ G,

also ist f konstant auf G nach Korollar 4.34. Ferner ist f(a) = 1 für mindestens ein
a ∈ G nach Voraussetzung. Also ist f ≡ 1 auf G und somit exp ◦g = id auf G.
Zu (c): „⇒“: Dies folgt aus (b).
„⇐“: Seien f eine Stammfunktion von 1

z
auf G, a ∈ G r {0} beliebig und w ∈ C

mit ew = a
ef(a) gewählt — dies geht, weil exp: C → Ċ surjektiv ist (Übung!). Für

h = f + w : G→ C gilt dann h′(z) = 1
z
für alle z ∈ G und exp(h(a)) = a. Mit (b) folgt

dann exp ◦h = id auf G.
Definition 4.41. Die Funktion Log : Ċ→ C, Log(z) := log|z|+i Arg(z) heißt Hauptwert
des Logarithmus (siehe Bemerkung 4.12 zur Definition der Argumentfunktion Arg). Die
Einschränkung von Log auf C \ {x ∈ R | x ≤ 0} heißt Hauptzweig des Logarithmus.
Beispiel 4.42. Gesucht sind die Werte z ∈ C mit ez = 1 + i. Mit Satz 4.40(a) und der
Definition des Hauptzweig des Logarithmus folgt z = Log(1 + i) + 2πik für k ∈ Z also ist
die Lösungsmenge für diese Gleichung gegeben durch

{Log(1 + i) + 2πik | k ∈ Z} = {log|1 + i|+ i(2πk + Arg(1 + i)) | k ∈ Z}
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=
{

log
√

2 + iπ
(

2k + 1
4

)
| k ∈ Z

}
,

denn |1 + i| =
√

2 und Arg(1 + i) = π
4 .

Definition 4.43. Wir definieren für z ∈ Ċ und w ∈ C: zw := {exp(w(Log(z) + 2πik)) |
k ∈ Z}. Dabei heißt ew Log(z) Hauptwert von zw, und die Einschränkung des Hauptwertes
auf C \ {x ∈ R | x ≤ 0} heißt Hauptzweig von zw.

Beispiel 4.44. Es gilt ii = {exp(i(Log(i)+2πik)) | k ∈ Z} = {exp(i(log(1)+ iπ2 )−2πk) |
k ∈ Z} = {e−π2−2πk | k ∈ Z} und der Hauptwert von ii ist e−π2 .

4.4 Der Cauchysche Integralsatz
Satz 4.45 (Integralformeln von Cauchy). Seien U ⊆ C offen, Br(z0) ⊆ U und f : U → C
holomorph.

(a) Für jedes z ∈ B := Br(z0) gilt:

(4.10) f(z) = 1
2πi

∫
∂B

f(ζ)
ζ − z

dζ.

(b) f ist beliebig oft komplex differenzierbar und es gilt für alle z ∈ B und n ∈ N0:

(4.11) f (n)(z) = n!
2πi

∫
∂B

f(ζ)
(ζ − z)n+1 dζ.

Beweis. (a): Sei z ∈ B fest gewählt. Wir betrachten in U die Funktion

g(ζ) :=


f(ζ)− f(z)

ζ − z
ζ 6= z

f ′(z) ζ = z.

Dann ist g in U stetig (da f in U komplex differenzierbar ist) und holomorph in U r {z}.
Aus Satz und Definition 4.37, angewendet in Bρ(z0) mit Br(z0) ⊆ Bρ(z0) ⊆ U , folgt

0 =
∫
∂B

g =
∫
∂B

f(ζ)− f(z)
ζ − z

dζ =
∫
∂B

f(ζ)
ζ − z

dζ − f(z)
∫
∂B

1
ζ − z

dζ.

Es reicht also,

(4.12)
∫
∂B

1
ζ − z

dζ = 2πi

zu zeigen. Dazu definieren wir für z ∈ B

h(z) :=
∫
∂B

1
ζ − z

dζ.
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Gemäß den Sätzen 2.16 und 4.18 ist h in B holomorph und es gilt

h′(z) =
∫
∂B

1
(ζ − z)2 dζ.

Da der Integrand im letzten Integral eine Stammfunktion besitzt, liefert Satz und
Definition 4.37(a) h′ ≡ 0 in B. Wegen Korollar 4.34 ist h ≡ h(z0), und (4.12) folgt nun
aus Beispiel 4.27(b).
(b):Wie oben dürfen wir in (4.10) unter dem Integral beliebig oft komplex differenzieren

und erhalten die Formel (4.11).

Beispiel 4.46. Manche komplexe Wegintegrale können mit der Formel von Cauchy
direkt berechnet werden. Als Beispiel betrachten wir für r > 0, r 6= 1:∫

∂Br(0)

cos(πz)
z(1 + z) dz =

∫
∂Br(0)

cos(πz)
z

dz −
∫
∂Br(0)

cos(πz)
1 + z

dz =
{

2πi für r ∈ (0, 1)
4πi für r > 1.

Dies folgt, da nach Satz 4.45(a) das erste Integral immer den Wert 2πi cos(π · 0) = 2πi
hat, und das zweite den Wert 0 für r < 1 da der Integrand in B1(0) holomorph ist, und
den Wert 2πi cos(π · (−1)) = −2πi für r > 1.

Satz 4.47 (Satz von Morera). Sei G ⊆ C offen und f : G → C stetig. Dann sind
äquivalent:

(i) f ist holomorph.

(ii) f ist lokal integrabel, d.h. jeder Punkt z ∈ G besitzt eine offene Umgebung U ⊆ G,
sodass f |U integrabel ist.

Beweis. „(i)⇒ (ii)“: Sei z ∈ G und δ > 0 mit Bδ(z) ⊆ G. Da U := Bδ(z) ein Sterngebiet
ist, ist f |U integrabel nach Satz und Definition 4.37(c).
„(ii) ⇒ (i)“: Sei z ∈ G beliebig und U wie in (ii) gefordert, d.h. es existiert eine

Stammfunktion F : U → C von f |U . Nach Satz 4.45(b) ist F insbesondere zweimal
komplex differenzierbar in U , also ist f komplex differenzierbar in U . Da z ∈ G beliebig
war, ist f holomorph.

Korollar 4.48. Seien U ⊆ C offen, z0 ∈ U und f : U → C stetig. Ferner sei f in
U r {z0} holomorph. Dann ist f sogar in U holomorph.

Beweis. Dies folgt direkt aus Satz und Definition 4.37(c) und Satz 4.47.

Korollar 4.48 kann durch mehrmalige Anwendung wie folgt verschärft werden:

Satz 4.49 (Hebbarkeitssatz von Riemann). Seien z0 ein Punkt in der offenen Teilmenge
U ⊆ C und f : Ur{z0} → C holomorph. Falls f in Br(z0)r{z0} für ein r > 0 beschränkt
ist, dann existiert eine holomorphe Fortsetzung von f auf ganz U .
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Beweis. Die Funktion

F (z) :=
{

(z − z0)f(z), z ∈ U r {z0},
0, z = z0,

ist in U r {z0} holomorph. Außerdem ist F in z0 stetig, da f nahe bei z0 beschränkt ist.
Nach Korollar 4.48 ist F in z0 komplex differenzierbar. Die Funktion

h(z) :=


F (z)
z − z0

, z ∈ U r {z0},

F ′(z0), z = z0,

ist also auch holomorph in U r {z0} und stetig in U . Wiederum liefert Korollar 4.48,
dass h in U holomorph ist. Wegen h = f in U r {z0} ist h die gesuchte holomorphe
Fortsetzung von f auf U .

Satz 4.50. Seien U ⊆ C offen und f : U → C holomorph. Dann ist f analytisch. Ist

(4.13) f(z) =
∞∑
k=0

ak(z − z0)k

für ein z0 ∈ U die Entwicklung von f in eine Potenzreihe mit Entwicklungspunkt z0,
dann konvergiert diese mindestens in der größten offenen Kreisscheibe BR(z0) ⊆ U . Die
Koeffizienten ak sind eindeutig bestimmt durch die Formel

(4.14) ak = 1
2πi

∫
∂Br(z0)

f(ζ)
(ζ − z0)k+1 dζ,

für beliebiges r ∈ (0, R).

Beweis. Sei z0 ∈ U fest gewählt. Seien R := dist(z0, ∂U), r ∈ (0, R) fest gewählt und κ
der positiv orientierte Randweg von Br(z0). Für z ∈ Br(z0) liefert die Integralformel von
Cauchy

(4.15) f(z) = 1
2πi

∫
κ

f(ζ)
ζ − z

dζ.

Wir entwickeln 1/(ζ − z), den Integralkern von Cauchy, für z ∈ Br(z0) und ζ ∈ ∂Br(z0)
in eine Reihe aus Potenzen von (z − z0)/(ζ − z0):

1
ζ − z

= 1
1− z−z0

ζ−z0

1
ζ − z0

=
∞∑
k=0

(z − z0)k
(ζ − z0)k+1 .

Wegen ∣∣∣∣z − z0

ζ − z0

∣∣∣∣ = |z − z0|
r

< 1
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konvergiert diese für festes z gleichmäßig in ζ. Mit (4.15) und Satz 4.30(b) folgt

(4.16) f(z) =
∞∑
k=0

(
1

2πi

∫
κ

f(ζ)
(ζ − z0)k+1 dζ

)
(z − z0)k =

∞∑
k=0

ak(z − z0)k,

wobei die Koeffizienten durch (4.14) gegeben sind. Andererseits sind die ak durch
Satz 4.22(b) unabhängig von r eindeutig festgelegt. Da r ∈ (0, R) beliebig war, folgt,
dass die Reihe (4.16) in BR(z0) lokal absolut gleichmäßig konvergiert.

Bemerkung und Beispiel 4.51. Die Taylorreihe einer rationalen Funktion berechnet
man für einen Entwicklungspunkt z0 ∈ C am einfachsten, indem man nach Partialbruch-
zerlegung Terme der Form 1/(z − a) als geometrische Reihe schreibt:

(4.17) 1
z − a

= − 1
a− z0

· 1
1− z−z0

a−z0

= −
∞∑
`=0

(z − z0)`
(a− z0)`+1 .

Die Reihe für Terme der Form 1/(z − a)k ergibt sich dann durch Ableiten von (4.17).
Ein Beispiel für eine Entwicklung um den Nullpunkt:

−1
(z − 1)2(z − 2) = 1

z − 1 + 1
(z − 1)2 −

1
z − 2

= −
∞∑
k=0

zk +
∞∑
k=1

kzk−1 +
∞∑
k=0

1
2k+1 z

k =
∞∑
k=0

(
k + 1

2k+1

)
zk.

Satz 4.52 (Cauchy-Ungleichung). Seien U ⊆ C offen, f : U → C holomorph, a ∈ U und
0 < r < dist(a,C \ U). Dann ist |f (n)(a)| ≤ n!

rn
max∂Br(a)|f | für alle n ∈ N.

Beweis. Dies folgt aus (4.11) und der Standardabschätzung.

Satz 4.53 (Satz von Liouville). Jede beschränkte ganze Funktion ist konstant auf C.

Beweis. Sei L := supz∈C|f(z)|. Die Cauchy-Ungleichung (Satz 4.52) liefert |f ′(a)| ≤ L
r

für alle a ∈ C und r > 0. Es folgt also f ′(a) = 0 für alle a ∈ C. Also ist f konstant nach
Korollar 4.34.

Satz 4.54 (Fundamentalsatz der Algebra). Jedes Polynom f : C→ C vom Grad n ≥ 1
hat eine Nullstelle in C.

Beweis. Sei f(z) =
∑n

k=0 akz
k mit ak ∈ C, k = 0, . . . , n, an 6= 0. Dann gilt

lim
|z|→∞

∣∣∣∣f(z)
zn

∣∣∣∣ = |an| > 0, also lim
|z|→∞

|f(z)| =∞.

Angenommen, f habe keine Nullstelle. Dann ist g = 1/f eine ganze Funktion mit
lim|z|→∞|g(z)| = 0. Also ist g auch beschränkt und somit konstant nach Satz 4.53. Dies
erzwingt g ≡ 0, was ein Widerspruch ist.

Bemerkung 4.55. Aus Satz 4.54 kann per Induktion gezeigt werden, dass jedes komplexe
Polynom in Linearfaktoren zerlegt werden kann. Diese Eigenschaft haben wir in früheren
Ergebnissen bereits mehrmals verwendet.
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4.5 Windungszahlen
Definition und Satz 4.56. Seien w ∈ C und γ : [a, b] → C r {w} ein geschlossener
Integrationsweg. Dann definieren wir die Windungszahl (Umlaufzahl) ind(γ, w) von γ um
w durch

ind(γ, w) := 1
2πi

∫
γ

1
z − w

dz.

Es gilt dann ind(γ, w) ∈ Z.

Beweis. Wir zeigen den Fall w = 0, a = 0 und b = 1. Der allgemeine Fall folgt dann aus
ind(γ, w) = ind(γ − w, 0) und einer Umparametrisierung. Sei g : [0, 1]→ C durch

g(t) := 1
2πi

∫ t

a

γ̇

γ

definiert. Für h := e−2πigγ folgt ḣ = e−2πig(−2πiġγ + γ̇) ≡ 0, nach Definition von
g. Demnach ist h ≡ c für ein c ∈ C und es gilt c 6= 0, denn γ(0) 6= 0. Es folgt
e2πig(1) = γ(1)/c = γ(0)/c = e2πig(0) = e0 = 1. Die Eigenschaften der Exponentialfunktion
liefern ind(γ, 0) = g(1) ∈ Z (Übung!).

Bemerkung 4.57. Wir zeigen, dass die Windungszahl geometrisch die Anzahl der
Windungen eines geschlossenen Integrationsweges γ um w zählt, wobei Windungen gegen
den Uhrzeigersinn positiv und im Uhrzeigersinn negativ gezählt werden. Wir betrachten
den Fall w = 0 und γ : [0, 1] → Ċ: Es gibt eine Zerlegung 0 = t0 < t1 < · · · < tn = 1
von [0, 1], so dass für jedes k die Spur von γk := γ|[tk−1,tk] in einer offenen Kreisscheibe
Dk ⊆ Ċ liegt. Gemäß Satz 4.40(c) existiert auf jedem Dk ein Zweig des Logarithmus. Wir
setzen zk := γ(tk). Induktiv wählen wir wie folgt Zweige des Logarithmus gk auf Dk: Der
Zweig g1 sei willkürlich gewählt. Wenn gk festgelegt ist, dann wird der Zweig gk+1 durch
die Bedingung gk(zk) = gk+1(zk) eindeutig festgelegt. Mit der Definition ϕk := Im(gk ◦ γk)
folgt γk(t) = |γk(t))|eiϕk(t) für t ∈ [tk−1, tk], d.h. ϕk ist ein Argument von γk. Da gk in Dk

eine Stammfunktion von 1/z ist, folgt∫
γk

1
z

dz = gk(zk)− gk(zk−1) = log|zk| − log|zk−1|+ i(ϕk(tk)− ϕk(tk−1)),

d.h. der Imaginärteil dieses Integrals misst die Winkeländerung bezüglich 0, welche γ im
Abschnitt [tk−1, tk] erfährt. Summation ergibt

ind(γ, 0) = 1
2πi

∫
γ

1
z

dz = 1
2πi

n∑
k=1

∫
γk

1
z

dz

= 1
2πi
(
log|z0| − log|z0|+ i(ϕn(1)− ϕ1(0))

)
= ϕn(1)− ϕ1(0)

2π ∈ Z,

also die Anzahl der Windungen von γ um 0.
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5 Laurentreihen und der
Residuenkalkül

Definition und Bemerkung 5.1. Seien U ⊆ C offen, z0 ∈ U und f : U \ {z0} → C
holomorph. In diesem Fall nennt man z0 eine isolierte Singularität von f .

(i) Ist f in einer Umgebung von z0 beschränkt, so können wir f nach Satz 4.49
holomorph in U fortsetzen. In diesem Fall nennt man z0 eine hebbare Singularität
von f .

(ii) Existiert m ∈ N derart, dass a−m := limz→z0(z − z0)mf(z) existiert und von Null
verschieden ist, so nennen wir z0 einen Pol m-ter Ordnung von f . In diesem Fall gilt
limz→z0|f(z)| =∞. Die Funktion z 7→ (z − z0)mf(z) hat eine hebbare Singularität
in z0 und wird durch den Wert a−m in z0 zu einer holomorphen Funktion g : U → C
fortgesetzt. Für r ∈ (0, dist(z0,C\U)) lässt sich g also in Br(z0) in eine Taylorreihe
folgender Form entwickeln:

g(z) =
∞∑
n=0

bn(z − z0)n mit bn = 1
2πi

∫
∂Br(z0)

g(ξ)
(ξ − z0)n+1 dξ.

Für z ∈ Br(z0) \ {z0} ergibt sich also

f(z) =
∞∑

n=−m

an(z − z0)n mit an = bn+m = 1
2πi

∫
∂Br(z0)

f(ξ)
(ξ − z0)n+1 dξ.

(iii) Trifft weder (i) noch (ii) zu, so nennt man z0 eine wesentliche Singularität von f .
Dies ist zum Beispiel für die Funktion f : Ċ→ C, f(z) = e 1

z und z0 = 0 der Fall.
Diese Funktion besitzt die Reihenentwicklung

f(z) =
0∑

n=−∞

zn

(−n)! z ∈ Ċ.

Bemerkung 5.2. Ist U ⊆ C eine offene Menge und f : U → C eine Funktion, so nennt
man f auch meromorph, wenn es eine in U diskrete Menge M gibt, so dass f |U\M
holomorph ist und so, dass alle Punkte in M Pole von f sind. M diskret in U bedeutet
hier, dass M keinen Häufungspunkt in U besitzt.
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Definition 5.3. Seien U ⊆ C offen und
∑

n fn eine Reihe von Funktionen fn : U → C,
wobei hier n entweder N oder Z durchläuft. Wir nennen die Funktionenreihe

∑
n fn

dann kompakt konvergent, wenn sie in jeder kompakten Teilmenge von U gleichmäßig
konvergiert.
Satz 5.4. Seien U ⊆ C, z0 ∈ U , r = dist(z0,C \ U) und f : U \ {z0} → C holomorph.
Dann lässt sich f um z0 in eine Laurentreihe entwickeln, d.h. es gilt

(5.1) f(z) =
∞∑

n=−∞

an(z − z0)n für z ∈ Br(z0) \ {z0},

wobei die Koeffizienten an unabhängig von s ∈ (0, r) gegeben sind durch

an = 1
2πi

∫
∂Bs(z0)

f(ξ)
(ξ − z0)n+1 dξ, n ∈ Z.

Die Reihe (5.1) ist ferner kompakt konvergent in Br(z0) \ {z0}. Genauer: Die Funktionen

f+ : Br(z0)→ C, f+(z) =
∞∑
n=0

an(z − z0)n

f− : C \ {z0} → C, f−(z) =
−1∑

n=−∞

an(z − z0)n

sind holomorph und die Reihenentwicklungen sind kompakt konvergent im jeweiligen
Definitionsbereich. Ferner gilt f(z) = f+(z) + f−(z) für z ∈ Br(z0) \ {z0}.
Beweis. Siehe [14, Kap. 6, Satz 1.2]
Definition 5.5. In der Situation von Satz 5.4 nennt man die Funktion f+ den Nebenteil
und die Funktion f− den Hauptteil der Laurentreihe von f in z0. Ferner nennt man a−1
das Residuum von f und schreibt:

resz0 f := a−1.

Bemerkung 5.6. (a) Seien m ∈ N und z0 ein m-facher Pol einer holomorphen Funk-
tion f : U \ {z0} → C. Sei ferner g die holomorphe Fortsetzung der Funktion
z 7→ (z − z0)mf(z) auf U . Dann gilt

resz0 f = g(m−1)(z0)
(m− 1)! .

Im Fall m = 1 gilt speziell:
resz0 f = lim

z→z0
(z − z0)f(z).

Ist nämlich
∑∞

n=0 bn(z − z0)n die Taylorentwicklung von g um z0, dann folgt
f(z) =

∑∞
n=−m bn+m(z − z0)n für die Laurententwicklung von f um z0 und daher

resz0 f = bm−1
Satz 4.22= g(m−1)(z0)

(m− 1)! .
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(b) Seien z0 ∈ C, U eine offene Umgebung von z0 und g, h : U → C holomorphe
Funktionen mit g(z0) 6= 0, h(z0) = 0 und h′(z0) 6= 0. Dann hat f = g

h
: U \{z0} → C

in z0 einen einfachen Pol mit resz0 f = g(z0)
h′(z0) . Es gilt nämlich

lim
z→z0

(z − z0)f(z) = lim
z→z0

g(z) z − z0

h(z)− h(z0) = g(z0)
h′(z0) 6= 0.

Demnach hat f einen einfachen Pol in z0 und die Behauptung folgt aus (a).

Satz 5.7 (Residuensatz). Seien G ⊆ C ein Sterngebiet, γ ein Integrationsweg in G,
M ⊆ G endlich mit |γ| ∩M = ∅ und f : G \M → C holomorph. Dann gilt∫

γ

f = 2πi
∑
w∈M

ind(γ, w) resw f.

Beweis. Für w ∈M sei hw : C \ {w} → C der Hauptteil der Laurentreihenentwicklung
von f in w. Dann lässt sich die Funktion g := f −

∑
w∈M hw holomorph auf G fortsetzen.

Nach Satz und Definition 4.37 gilt also 0 =
∫
γ
g und damit ist

(5.2)
∫
γ

f =
∑
w∈M

∫
γ

hw.

Für festes w ∈ M hat man dabei eine nach Satz 5.4 auf |γ| gleichmäßig konvergente
Reihenentwicklung hw(z) =

∑−1
n=−∞ an(z − w)n, also gilt∫

γ

hw =
−1∑

n=−∞

an

∫
γ

(z − w)n dz = a−1

∫
γ

1
z − w

dz = 2πi ind(γ, w) resw f,

da für n < −1 die Funktion z 7→ (z − w)n auf C \ {w} eine Stammfunktion besitzt.
Einsetzen in (5.2) liefert also∫

γ

f = 2πi
∑
w∈M

ind(γ, w) resw f.

Bemerkung 5.8. Der Residuensatz kann unter wesentlich allgemeineren Bedingungen
bewiesen werden. So muss G kein Sterngebiet sein, die Anzahl der nicht hebbaren
Singularitäten von f kann unendlich sein, und der Integrationsweg γ kann unter gewissen
Bedingungen durch einen Zyklus ersetzt werden, eine endliche Anzahl geschlossener
Integrationswege; siehe z.B. [14, Kap. VI, Satz 4.1].

Satz 5.9. Sei G ein Sterngebiet, welches eine Umgebung des Abschlusses der oberen
Halbebene H := {z ∈ C | Im z > 0} darstellt. Sei ferner f holomorph in GrM , wo M
die endliche Menge von Polen und wesentlichen Singularitäten von f ist. Außerdem gelte
M ∩ R = ∅ und

(5.3) lim
|z|→∞
z∈H

zf(z) = 0.
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Dann folgt

(5.4) lim
r→∞

∫ r

−r
f = 2πi

∑
w∈M∩H

resw f.

Beweis. Wir betrachten γr : [0, π] → C mit γr(t) := reit. Für hinreichend großes r gilt
M ∩ H ⊆ Br(0). Ferner gilt offensichtlich ind([−r, r] · γr, w) = 1 für w ∈ M ∩ H und
ind([−r, r] · γr, w) = 0 für w ∈M rH. Es folgt aus dem Residuensatz, Satz 5.7:

(5.5)
∫

[−r,r]
f +

∫
γr

f = 2πi
∑

w∈M∩H

resw f.

Ferner gilt ∣∣∣∣∫
γr

f

∣∣∣∣ ≤ max
|z|=r
|f(z)|L(γr) = πmax

|z|=r
|zf(z)| → 0

für r →∞, wegen (5.3). Demnach folgt (5.4) aus r →∞ in (5.5).

Bemerkung 5.10. Der Grenzwert auf der linken Seite in (5.4) heißt Cauchyscher
Hauptwert im Unendlichen. Insbesondere trifft Satz 5.9 zu, falls f eine rationale Funktion
ist, deren Nenner einen um zwei größeren Grad als ihr Zähler hat. In diesem Fall ist f
auf R wegen Aufgabe 21(b) und dem Majorantenkriterium sogar Lebesgue-Integrierbar,
und in (5.4) steht links das Lebesgue-Integral über R (kann auch als das uneigentliche
Riemann-Integral aufgefasst werden).

Satz 5.11. Sei f wie in Satz 5.9 gegeben, wobei wir aber statt (5.3) lediglich die schwä-
chere Voraussetzung

(5.6) lim
|z|→∞
z∈H

f(z) = 0

machen. Dann folgt

(5.7)
∫ +∞

−∞
f(x)eix dx = 2πi

∑
w∈M∩H

resw(f(ζ)eiζ).

Die Existenz des uneigentlichen Riemann-Integrals ist dabei Teil der Aussage.

Beweis. Für hinreichend großes r0 gilt M ∩H ⊆ Br0(0). Sei γ0 ein injektiver Integrati-
onsweg von 0 nach ir0, so dass |γ0| ⊆ (B ∪ {0, ir0}) rM gilt und so, dass B r |γ0| die
disjunkte Vereinigung zweier Gebiete G1 und G2 ist. Hier sollen G1 rechts und G2 links
von γ0 liegen. Für r > r0 definieren wir Integrationswege

γr,1(t) := reit, t ∈ [0, π/2]
γr,2(t) := reit, t ∈ [π/2, π].

Es folgt, dass Γr,1 := [0, r] ·γr,1 · [ir, ir0] ·γ−1
0 und Γr,2 := [−r, 0] ·γ0 · [ir0, ir] ·γr,2 geschlossene

Integrationswege in G sind. Ferner gilt offensichtlich ind(Γr,j, w) = δjk für w ∈M ∩Gk,
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j, k = 1, 2 und ind(Γr,j, w) = 0 für w ∈ M rH. Aus dem Residuensatz, Satz 5.7, folgt
also

(5.8)
∫

Γr,1
f(z)eiz dz =

(∫
[0,r]

+
∫
γr,1

−
∫

[ir0,ir]
−
∫
γ0

)
f(z)eiz dz

= 2πi
∑

z∈M∩G1

resz(f(ζ)eiζ)

und

(5.9)
∫

Γr,2
f(z)eiz dz =

(∫
[−r,0]

+
∫
γ0

+
∫

[ir0,ir]
+
∫
γr,2

)
f(z)eiz dz

= 2πi
∑

z∈M∩G2

resz(f(ζ)eiζ).

Aufgabe 35(b) von Blatt 9 liefert

(5.10)
∣∣∣∣∫
γr,1

f(z)eiz dz
∣∣∣∣ =

∣∣∣∣∫ π/2

0
f(reit) exp(ireit)ireit dt

∣∣∣∣
≤ max
|z|=r

Im z≥0

|f(z)|r
∫ π/2

0
|exp(ireit)| dt ≤ max

|z|=r
Im z≥0

|f(z)|π2 → 0

für r →∞, wegen (5.6). Die Funktion t 7→ f(it) ist in [r0,∞) beschränkt, nach Definition
von r0 und wegen (5.6). Daher ist t 7→ f(it)e−t Lebesgue-integrierbar in [r0,∞) und es
existiert

C := lim
r→+∞

∫
[ir0,ir]

f(z)eiz dz = i
∫ +∞

r0

f(it)e−t dt.

Aus diesen Tatsachen folgt für r →∞ in (5.8) die Existenz von

(5.11)
∫ ∞

0
f(x)eix dx = lim

r→∞

∫
[0,r]

f(z)eiz dz

= 2πi
∑

z∈M∩G1

resz(f(ζ)eiζ) + C +
∫
γ0

f(z)eiz dz.

Analog zeigt man

(5.12)
∫ 0

−∞
f(x)eix dx = lim

r→∞

∫
[−r,0]

f(z)eiz dz

= 2πi
∑

z∈M∩G2

resz(f(ζ)eiζ)− C −
∫
γ0

f(z)eiz dz.

Aus der Summe von (5.11) und (5.12) folgt dann die Behauptung.
Bemerkung 5.12. Es existieren viele Anwendungen dieser und ähnlicher Sätze in der
reellen Analysis. Insbesondere kann man auch einfache Pole auf der reellen Achse zulassen
oder Integrale über [0,∞) betrachten. Einige Beispiele werden als Übung gestellt.
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6 Die Fouriertransformation
In diesem Kapitel bezeichne Lp(B) := Lp(B,C) für eine messbare Teilmenge B ⊆ RN

und p ∈ [1,∞) den komplexen Vektorraum der Funktionen f : B → C, so dass Re f und
Im f in Lp(B,RN) liegen, siehe Bemerkung 2.14. Wir setzen wieder

‖f‖p :=
(∫

B

|f |p
)1/p

.

Für eine L2-Funktion f : [−π, π]→ C definiert man die Fourierreihenentwicklung von
f durch

a0

2 +
∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
,

mit

(6.1)
ak := 1

π

∫ π

−π
f(x) cos(kx) dx, k ∈ N0

bk := 1
π

∫ π

−π
f(x) sin(kx) dx, k ∈ N.

In Mathe 2 wurde gezeigt, dass die Fourierreihe in L2([−π, π]) gegen f konvergiert. Unter
gewissen zusätzlichen Bedingungen an f konvergiert die Reihe sogar punktweise oder
gleichmäßig. Die Fourierreihe kann auch mit Potenzen von eix geschrieben werden:

n∑
k=−n

ckeikx mit ck := 1
2π

∫ π

−π
f(x)e−ikx dx.

Die Abbildung Z→ C, k 7→ ck, heißt dann Fouriertransformierte von f . Wir wollen hier
eine analoge Transformation von komplexwertigen Funktionen betrachten, die auf R (statt
auf [−π, π]) bzw. auf RN definiert sind. Es zeigt sich, dass die Fouriertransformierten
dann auch komplexwertige Funktionen auf R (statt auf Z) bzw. RN sind.

Definition 6.1. Wir setzen im Folgenden D := L1(RN) ∩ L2(RN) und betrachten das
komplexe Skalarprodukt

〈f, g〉 :=
∫
RN
f(x)g(x) dx für f, g ∈ D,

welches auf dem Raum L2(RN) definiert ist und ihn mit der induzierten Norm ‖·‖2 zu
einem Hilbertraum macht. Allerdings ist der Unterraum D bezügl. dieser Norm nicht
vollständig.
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Definition 6.2. Für f ∈ D definieren wir die Fouriertransformierte F(f) : RN → C von
f durch

F(f)(y) := (2π)−N2
∫
RN
f(x)e−i〈x,y〉 dx für y ∈ RN , f ∈ D.

Der lineare Operator F heißt Fouriertransformation. Oft wird auch f̂ anstelle von F(f)
geschrieben.

Bemerkung 6.3. Sei f ∈ D. Wegen

|F(f)(y)| =
∣∣∣∣∫

RN
f(x)e−i〈x,y〉 dx

∣∣∣∣ ≤ ∫
RN
|f(x)| dx = ‖f‖L1 für alle y ∈ RN

gilt supRN |F(f)| <∞. Insbesondere ist F(f) wohldefiniert. Außerdem ist ist F(f) nach
Satz 2.15 stetig.

Bemerkung 6.4. Für N = 1, f ∈ D, ist die Fouriertransformierte F(f) : R→ C von f
definiert durch

F(f)(y) = 1√
2π

∫
R
f(x)e−ixy dx.

Erfüllen die komplexe Polynome P und Q die Bedingung gradQ− gradP ≥ 2 und hat
Q keine Nullstelle in R, so folgt aus Satz 5.9 für den speziellen Fall f := P

Q
∈ D:

(6.2) F(f)(y) =
√

2π i
∑
w∈M

resw fy.

Hier setzen wir fy(z) := e−iyzf(z), so dass fy|R ∈ L1(R) gilt, und verwenden M := {z ∈
C | Q(z) = 0, Im z > 0}.

Satz 6.5. Sei f ∈ D.

(a) Für alle x, y ∈ RN gilt F(f(·+ x))(y) = ei〈y,x〉F(f)(y).

(b) Für alle a ∈ R \ {0} und y ∈ RN gilt F(f(a·))(y) = |a|−NF(f)
(
y
a

)
.

(c) Ist zusätzlich f ∈ C1(RN ) sowie ∂1f, . . . , ∂Nf ∈ D, dann ist F(∂jf)(y) = iyjF(f)(y)
für j = 1, . . . , N .

Beweis. (a) und (b) folgen direkt aus dem Transformationssatz, Satz 2.18.
(c): Sei zunächst f ∈ C∞c (RN ,C). Mit Hilfe der partiellen Integration, Lemma 3.32(b),

folgt

F(∂jf)(y) = (2π)−N2
∫
RN
∂jf(x)e−i〈x,y〉 dx

= iyj(2π)−N2
∫
RN
f(x)e−i〈x,y〉 dx = iyjF(f)(y).
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Ist f ∈ D ∩ C1(RN ,C), dann kann man zeigen, dass eine Folge (fk) ⊆ C∞c (RN ,C) mit
fk → f in L1(RN) und ∂jfk → ∂jf in L1(RN) für j = 1, 2, . . . , N existiert. Es folgt

F(∂jf)(y) = (2π)−N2
∫
RN
∂jf(x)e−i〈x,y〉 dx = (2π)−N2 lim

k→∞

∫
RN
∂jfk(x)e−i〈x,y〉 dx

= iyj(2π)−N2 lim
k→∞

∫
RN
fk(x)e−i〈x,y〉 dx = iyj(2π)−N2

∫
RN
f(x)e−i〈x,y〉 dx

= iyjF(f)(y).

Bemerkung 6.6. Sei f ∈ Ck(RN) so, dass alle partiellen Ableitungen bis zur Ordnung
k in D liegen. Dann lässt sich aus Satz 6.5(c) induktiv für alle α ∈ NN

0 mit |α| ≤ k
folgern:

F (∂αf) (y) = (iy)αF(f)(y) für alle y ∈ RN .
Speziell folgt für k = 2 hieraus:

F(−∆f)(y) = |y|22F(f)(y).

Beispiel 6.7. Wir berechnen die Fouriertransformierte der Funktion f : RN → R,
f(x) = e−|x|22/2. Zunächst gilt für N = 1 und y ∈ R wegen

∣∣∣exp
(
− (x+iy)2

2

)∣∣∣ = exp
(
y2−x2

2

)
mit Satz 2.16:

d
dy

∫
R

exp
(
−(x+ iy)2

2

)
dx =

∫
R

d
dy exp

(
−(x+ iy)2

2

)
dx

= i
∫
R

(
−(x+ iy) exp

(
−(x+ iy)2

2

))
dx = i

∫
R

d
dx exp

(
−(x+ iy)2

2

)
dx

= i exp
(
−(x+ iy)2

2

)∣∣∣∣∞
−∞

= 0,

d.h. dieses Integral ist unabhängig von y. Mit Beispiel 2.21 erhalten wir∫
R

exp
(
−(x+ iy)2

2

)
dx =

∫
R

exp
(
−x

2

2

)
dx =

√
2π .

Dies liefert

(6.3) F(f)(y) = 1√
2π

∫
R

e−x2/2e−ixy dx

= e−y2/2 1√
2π

∫
R

exp
(
−(x+ iy)2

2

)
dx = e−y2/2.

Im allgemeinen Fall erhalten wir mit dem Satz von Fubini aus (6.3) für y ∈ RN :

F(f)(y) = 1
(2π)N/2

∫
RN

e−|x|22/2e−i〈x,y〉 dx = 1
(2π)N/2

∫
RN

N∏
j=1

e−x2
j/2e−ixjyj dx
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=
N∏
j=1

1√
2π

∫
R

e−x2
j/2e−ixjyj dxj =

N∏
j=1

e−y2
j /2 = e−|y|22/2.

Es folgt also F(f)(y) = f(y), d.h. f ist ein Fixpunkt der Fouriertransformation.

Definition 6.8. Es seien f, g : R→ C Funktionen. Wir definieren formal für x ∈ RN

(f ∗ g)(x) :=
∫
RN
f(x− y)g(y) dy.

f ∗ g wird auch als die Faltung von f und g bezeichnet.

Lemma 6.9. Für f, g ∈ D ist f ∗ g wohldefiniert und es gilt f ∗ g ∈ D.

Beweis. Sind f, g ∈ D, so ist (x, y) 7→ f(x− y)g(y) messbar (Übung!) und∫
RN

∫
RN
|f(x− y)g(y)| dx dy =

∫
RN
‖f‖L1g(y) dy = ‖f‖L1‖g‖L1 <∞.

Nach dem Satz von Tonelli liegt also (x, y) 7→ f(x− y)g(y) in L1(RN × RN). Der Satz
von Fubini liefert nun, dass (f ∗ g)(x) für fast alle x ∈ RN wohldefiniert ist und dass
f ∗ g in L1(RN) liegt, mit ‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 . Für Funktionen u, v ∈ L2(RN) gilt
die Cauchy-Schwarzsche Ungleichung:

(6.4) |〈u, v〉| ≤ ‖u‖L2‖v‖L2 .

Es folgt mit u = |f(x− y)|1/2 und v = |f(x− y)|1/2|g(y)| als Funktionen in y mit festem
x:∫

RN
|f ∗ g|2 =

∫
RN

∣∣∣∣∫
RN
f(x− y)g(y) dy

∣∣∣∣2 dx

≤
∫
RN

(∫
RN
|f(x− y)g(y)| dy

)2

dx Standardabsch.

=
∫
RN

(∫
RN
|f(x− y)|1/2|f(x− y)|1/2|g(y)| dy

)2

dx

≤
∫
RN
‖f‖L1

∫
RN
|f(x− y)||g(y)|2 dy dx (6.4) und Trafosatz

= ‖f‖L1

∫
RN

∫
RN
|f(x− y)||g(y)|2 dx dy Fubini

= ‖f‖2
L1‖g‖2

L2 Trafosatz
<∞,

also f ∗ g ∈ L2(RN). Insgesamt folgt f ∗ g ∈ D.

Wir schreiben ab jetzt meistens f̂ statt F(f).
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Proposition 6.10 (Faltungssatz). Für f, g ∈ D gilt

f̂ ∗ g = (2π)N2 f̂ ĝ.

Beweis. Sei x ∈ RN . Dann liefert der Satz von Fubini:

f̂ ∗ g(x) = (2π)−N2
∫
RN

(f ∗ g)(y)e−i〈x,y〉 dy

= (2π)−N2
∫
RN

∫
RN
f(y − z)g(z)e−i〈x,y〉 dz dy

= (2π)−N2
∫
RN

∫
RN
f(y − z)g(z)e−i〈x,y〉 dy dz

= (2π)−N2
∫
RN

∫
RN
f(v)g(z)e−i〈x,v+z〉 dv dz

= (2π)−N2
∫
RN
f(v)e−i〈x,v〉 dv

∫
RN
g(z)e−i〈x,z〉 dz

= (2π)N2 f̂(x)ĝ(x).

Im Folgenden wollen wir die Fouriertransformation auf ganz L2(RN) ausweiten und
dazu zeigen, dass die L2-Norm unter F erhalten bleibt. Dies kann nicht direkt aus der
Definition gefolgert werden, sondern wird mit einer Approximationsmethode gezeigt.
Dafür benötigen wir

Definition und Satz 6.11. Für x ∈ RN , ε > 0 sei ρε : RN → R gegeben durch

ρε(x) := (2πε2)−N2 exp
(
−|x|

2

2ε2

)
.

Dies ist der Gaußsche Glättungskern: Es gelten ρε ∈ C∞, ρε ≥ 0, ρε ∈ Lp(RN) für alle
p ≥ 1,

∫
RN ρε = 1 und ρε ist eine gerade Funktion. Für p ≥ 1 und f ∈ Lp(RN) gilt dann:

(6.5) lim
ε→0

ρε ∗ f = f in Lp(RN).

Ferner gilt
ρ̂ε(x) = (2π)−N2 exp

(
−ε

2|x|2

2

)
und ̂̂ρε = ρε.

Beweis. Für den Beweis von (6.5) siehe [28, Theorem 2.16]. Die anderen Aussagen folgen
aus Satz 6.5(b).

Satz 6.12. Für f ∈ D ist f̂ ∈ L2(RN) und es gilt die Gleichung von Plancherel:

‖f̂‖L2 = ‖f‖L2 .
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Beweis. Wegen Bemerkung 6.3 ist f̂ eine beschränkte stetige Funktion. Somit ist f̂
messbar und das Integral

kε := (2π)N/2
∫
RN
|f̂(z)|2ρ̂ε(z) dz

ist für jedes ε > 0 endlich. Wegen f ∈ L1(RN ) ist die Funktion (x, y, z) 7→ f(x)f(y)ρ̂ε(z)
messbar, und der Satz von Tonelli zeigt, dass sie in L1(R3N) liegt. Mit dem Satz von
Fubini, Beispiel 6.7 und Satz 6.5(b) rechnen wir:

kε = (2π)−N/2
∫
R3N

f(x)f(y)ei〈x−y,z〉ρ̂ε(z) d(x, y, z) =
∫
R2N

f(x)f(y)ρε(y − x) d(x, y)

=
∫
R2N

f(x)f(y)ρε(x− y) d(x, y) = 〈f, ρε ∗ f〉.

Wegen Definition und Satz 6.11 gilt ρε ∗ f → f in L2(RN) für ε → 0. Es folgt aus der
Cauchy-Schwarzschen Ungleichung limε→0 kε = limε→0〈f, ρε ∗ f〉 = 〈f, limε→0 ρε ∗ f〉 =
‖f‖L2 . Insbesondere bleibt kε beschränkt für ε→ 0. Wir haben andererseits

(6.6) 0 ≤ (2π)N/2ρ̂ε ↗ 1 für ε→ 0.

Nach dem Satz über die monotone Konvergenz liefert die Definition von kε also limε→0 kε =
‖f̂‖L2 und somit die Behauptung.

Satz 6.12 zeigt, dass F : D → L2(RN) ein stetiger linearer Operator ist. Wegen
C∞c (RN ,C) ⊆ D und weil C∞c (RN ,C) in L2(RN) dicht liegt (Maßtheorie!), liegt auch
D in L2(RN) dicht, d.h. jede Funktion in L2(RN) kann bezüglich der L2-Norm beliebig
gut durch eine Funktion in D approximiert werden. Zusammen mit der Gleichung von
Plancherel ermöglicht uns dies jetzt, F auf L2(RN) fortzusetzen.

Satz 6.13. Es gibt einen eindeutig bestimmten stetigen linearen Operator L2(RN) →
L2(RN), der eine Fortsetzung von F : D → L2(RN) ist. Wir bezeichnen ihn weiter mit
F und schreiben f̂ := F(f).

(a) F ist eine Isometrie, d.h. ‖f̂‖L2 = ‖f‖L2 für alle f ∈ L2(RN).

(b) Es gilt die Gleichung von Parseval: 〈f̂ , ĝ〉 = 〈f, g〉 für alle f, g ∈ L2(RN).

Beweis. Seien f ∈ L2(RN) und (fj) ⊆ D eine Folge mit fj → f in L2(RN) für j → ∞.
Mit Satz 6.12 ergibt sich ‖f̂j − f̂k‖L2 = ‖fj − fk‖L2 → 0 für j, k → ∞, weil (fj)
als konvergente Folge eine Cauchyfolge in L2(RN) ist. Demnach ist also auch f̂j eine
Cauchyfolge in L2(RN ), welche gegen eine Funktion g ∈ L2(RN ) konvergiert. Jede andere
Folge in D, welche in L2(RN ) gegen f konvergiert, lässt sich mit (fj) zusammenlegen und
ergibt wieder eine konvergente Folge. Das obige Argument lässt sich auch auf diese Folge
anwenden und liefert eine konvergente Folge von Fouriertransformierten, deren Grenzwert
unverändert g ist. Demnach hängt g nicht von der approximierenden Folge (fj) ab und
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wir setzen F(f) := f̂ := g. Es ist eine leichte Übung, die Linearität von F und den
Unterpunkt (a) zu zeigen. Die Stetigkeit von F folgt direkt aus diesen Tatsachen. Der
Unterpunkt (b) folgt aus (a) und der Polarisierungsgleichung, welche das Skalarprodukt
durch die induzierte Norm ausdrückt, siehe Mathe 2, Parallelogrammgleichung.
Bemerkung 6.14. Um die Fouriertransformierte einer Funktion f ∈ L2(RN) r D zu
berechnen, können wir f in L2(RN) beliebig durch Funktionen aus D approximieren.
Zum Beispiel gilt für R > 0, dass fR := 1BR(0)f in D liegt und dass fR → f (Übung!)
und somit auch f̂R → f̂ in L2(RN) gilt für R→∞.
Satz 6.15 (Inverse der Fouriertransformation in L2(RN)). Die Fouriertransformation
F : L2(RN )→ L2(RN ) ist bijektiv. Für g ∈ L2(RN ) setzen wir g∨(x) := ĝ(−x). Dann gilt

(6.7) F−1(g) = g∨

für alle g ∈ L2(RN). Demnach ist F ein unitärer Operator.
Beweis. Zunächst ist F als Isometrie automatisch injektiv. Sei f ∈ L2(RN), und sei
(fj) ⊆ D mit fj → f in L2(RN) für j →∞ gegeben. Dann gilt f̂j → f̂ nach Satz 6.13.
Es folgt für x ∈ RN∫

RN
ρ̂ε(z)f̂j(z)ei〈x,z〉 dz = (2π)−N/2

∫
R2N

ρ̂ε(z)fj(y)ei〈x−y,z〉 d(y, z)

=
∫
RN
ρε(y − x)fj(y) dy =

∫
RN
ρε(x− y)fj(y) dy

und daher

(6.8) (2π)N/2(̂ρ̂εf̂)(−x) =
∫
RN
ρ̂ε(z)f̂(z)ei〈x,z〉 dz =

∫
RN
ρε(x− y)f(y) dy = (ρε ∗ f)(x)

nach dem Grenzübergang j →∞. Ferner folgt aus (6.6) und dem Satz über die dominierte
Konvergenz (2π)N/2ρ̂εf̂ → f̂ in L2(RN), nach Satz 6.13 also auch

(6.9) lim
ε→0

(2π)N/2(̂ρ̂εf̂) = ̂̂
f in L2(RN).

Zusammen mit Definition und Satz 6.11 ergeben (6.8) und (6.9)

(6.10) ̂̂
f (−x) = f(x) f.ü.

und somit (f̂)∨ = f im Sinne von L2(RN). Damit haben wir (6.7) für alle g ∈ Bild(F)
gezeigt. Für beliebiges g ∈ L2(RN) sei h ∈ L2(RN) durch h(x) := g(−x) definiert. Dann
liefert (6.10) ̂̂

h (x) = h(−x) = g(x) f.ü.,

also g = ̂̂
h = F(ĥ) im Sinne von L2(RN). Dies zeigt, dass F surjektiv ist.

Bemerkung 6.16. Für g ∈ D gilt

g∨(x) = ĝ(−x) = (2π)−N/2
∫
RN
g(y)ei〈x,y〉 dy.
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6.1 Distributionen und Fundamentallösungen
In diesem Abschnitt werden wir am Beispiel der Laplacegleichung grob die Idee darstellen,
wie mit Hilfe von Distributionentheorie und Fourieranalysis partielle Differentialgleichun-
gen gelöst werden können.

Wir verwenden die Notation T := C∞c (RN ,C). Eine Distribution ist ein stetiger linearer
Operator T → C. Den Vektorraum der Distributionen bezeichnen wir mit T ∗.
Eine Schwierigkeit, auf die wir hier nicht eingehen werden, liegt darin, eine geeignete

Vektorraumtoplogie für T zu wählen, um hier von Stetigkeit sprechen zu können (man
wählt keine von einer Norm erzeugte Topologie!).

Beispiel 6.17. (a) Sei f : R→ C so, dass 1Kf ∈ L1(RN) für alle kompakten Mengen
K ⊆ RN gilt. Man nennt f dann lokal integrierbar. Wir definieren

τf (ϕ) :=
∫
RN
fϕ ∀ϕ ∈ T .

Dann gilt τf ∈ T ∗.

(b) Für x ∈ RN definieren wir
δx(ϕ) := ϕ(x).

Dann gilt δx ∈ T ∗. Um diese Distribution ähnlich wie in (a) als Integral schreiben
zu können, definiert man das Maß

δx(M) :=
{

1, x ∈M,

0, x /∈M

aufMN . Man nennt δ := δ0 das Dirac-Maß. Mit der Definition des Integrals einer
Funktion bezüglich eines Maßes aus der Maßtheorie folgt dann

(6.11)
∫
ϕ dδx = ϕ(x).

(c) Für ϕ ∈ T und x ∈ RN gilt ϕ(x) = limε→0(ρε ∗ ϕ)(x). Dies motiviert die in der
Physik übliche rein formale Schreibweise

ϕ(x) =
∫
RN
ϕ(y) dδx(y) = „

∫
RN
ϕ(y)δx(y) dy“

= „
∫
RN
ϕ(y)δ(x− y) dy“ = „(δ ∗ ϕ)(x)“.

Man rechnet also so, als ob δ eine Funktion wäre und limε→0 ρε = δ gelten würde.
In diesem Zusammenhang spricht man auch von der Delta-Funktion.
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(d) Im Fall N = 1 definiert man die „Stammfunktion“ von δ durch

Θ(x) :=
∫ x

−∞
δ(x) dx =

∫
(−∞,x]

dδ = δ((−∞, x]) =
{

1, falls x ≥ 0,
0, falls x < 0.

Θ wird auch als Heaviside-Funktion bezeichnet und ist wegen (a) auch eine Distri-
bution.

Für ein Element τ eines gewissen Unterraumes von T ∗ (den temperierten Distributionen)
definiert man die Fouriertransformation τ̂ wieder als Distribution durch

τ̂(ϕ) := τ(ϕ̂) für alle ϕ ∈ T .

Beispiel 6.18. Es gilt für beliebiges ϕ ∈ T :

δ̂(ϕ) = δ(ϕ̂) = ϕ̂(0) = (2π)−N/2
∫
RN
ϕ(y)e−i〈0,y〉 dy

= (2π)−N/2
∫
RN
ϕ(y) dy = (2π)−N/2τ1(ϕ)

und analog

τ̂1(ϕ) = τ1(ϕ̂) =
∫
RN
ϕ̂(y)ei〈0,y〉 dy = (2π)N/2ϕ(0) = (2π)N/2δ(ϕ),

also

(6.12) δ̂ = (2π)−N/2τ1 und τ̂1 = (2π)N/2δ.

Motiviert durch die Formel für partielle Integration in Lemma 3.32(b) definiert man
für einen Multiindex α die entsprechende Ableitung einer Distribution τ wiederum als
Distribution durch

∂ατ(ϕ) := (−1)|α|τ(∂αϕ).
Auch für Distributionen gilt dann die Beziehung aus Bemerkung 6.6 für die Fouriertrans-
formation der Ableitungen.

Beispiel 6.19. Als Anwendung lösen wir formal eine lineare partielle Differentialgleichung
mit Hilfe der Fouriertransformation: Gegeben sei eine Funktion f ∈ T und gesucht sei
eine Funktion u ∈ T mit

(6.13) −∆u = f.

Durch Fouriertransformation geht diese Gleichung über in | · |2û = f̂ , d.h. es gilt

u =
(
f̂

| · |

)∨
„= (2π)−N/2

(
1
| · |

)∨
︸ ︷︷ ︸

Λ

∗f“.
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Die letzte Umformung ist durch den Faltungssatz, Proposition 6.10, inspiriert, indem
man dort die inverse Fouriertransformation anwendet. Diese Überlegungen nimmt man
als Ausgangspunkt und gelangt (mit einigen trickreichen Rechnungen) zu dem Ergebnis

Λ(x) =


− |x|2 N = 1

− 1
2π log(|x|) N = 2

1
N(N − 2)ωN−1

|x|2−N N ≥ 3.

Man nennt Λ auch Fundamentallösung oder Greenfunktion des Problems (6.13). Unter
geeigneten Bedingungen an f (allgemeiner als f ∈ T ) ist nämlich u = Λ ∗ f die Lösung
von (6.13). Formal gilt, wenn man hier f = δ einsetzt, u = Λ ∗ δ = Λ und somit

−∆Λ = δ.

Die Fundamentallösung ist also die Lösung der Differentialgleichung im Distributionen-
sinne mit dem Dirac-Maß als Inhomogenität. Dieses Verfahren kann man generell für
lineare partielle Differentialgleichungen einsetzen, um Fundamentallösungen zu erhalten.
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7 Differentialgleichungen
In diesem Kapitel seien alle Funktionenräume wieder reell. Wir bezeichnen mit | · | := | · |2
die Euklidische Norm in RN , für N ∈ N. In Mathe 2 wurde für eine stetige Funktion
f : I → RN , I ein Intervall, das Integral

∫
I

f :=


∫
I
f1
...∫

I
fN


eingeführt und die Standardabschätzung

∣∣∫
I
f
∣∣ ≤ ∫

I
|f | gezeigt.

Definition 7.1. Es sei N ∈ N, U ⊆ R × RN und f : U → RN eine stetige Abbil-
dung. Ferner sei (t0, u0) ∈ U . Eine differenzierbare Kurve u : I → RN heißt Lösung der
Differentialgleichung erster Ordnung

(7.1) u̇ = f(t, u),

wenn
(t, u(t)) ∈ U und u̇(t) = f(t, u(t)) für alle t ∈ I.

Ist ferner t0 ∈ I und gilt u(t0) = u0, so nennt man die Kurve u auch Lösung des
Anfangswertproblems (AWP) {

u̇ = f(t, u) in I
u(t0) = u0

Bemerkung 7.2.

(a) Den Ausdruck (7.1) nennt man auch System von (gewöhnlichen) Differential-
gleichungen erster Ordnung. Hierbei bezieht sich die Ordnung auf die höchste
vorkommende Ableitung. Eine Gleichung z.B. der Form ü+αu̇+βu = 0 heißt auch
(gewöhnliche) Differentialgleichung zweiter Ordnung. Im Fall N = 1 spricht man
von einer skalaren (gewöhnlichen) Differentialgleichung.

(b) Ist U = R×U0 mit U0 ⊆ RN und f(t, x) = F (x) mit einer Abbildung F : U0 → RN ,
so nennt man die aus (7.1) hervorgehende Differentialgleichung

(7.2) u̇ = F (u)

autonom. Diese Gleichung kann man geometrisch interpretieren: Finde die in U0
verlaufende Kurve t 7→ u(t), deren Geschwindigkeitsvektoren u̇(t) jeweils durch die
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Werte F (u(t)) vorgegeben sind. Ein spezielles Beispiel sind die linearen Differential-
gleichungen der Form u̇ = Au für A ∈ RN×N (siehe Mathe II).
Gibt es u0 ∈ U0 mit F (u0) = 0, so ist die konstante Abbildung u(t) ≡ u0 eine
Lösung von (7.2). Wir nennen u dann auch stationäre Lösung, Gleichgewichtslösung
oder auch Equilibrium. Ist speziell F (0) = 0, so nennen wir die stationäre Lösung
u(t) ≡ 0 auch triviale Lösung.

(c) Zu einem Anfangswertproblem der Form (AWP) ist das folgende Integralproblem
nach dem Hauptsatz der Differential- und Integralrechnung äquivalent: Suche eine
stetige Funktion u : T → RN mit

u(t) = u(t0) +
∫ t

t0

f(s, u(s)) ds.

Definition 7.3. Sei U ⊆ R×RN und f : U → RN , (t, x) 7→ f(t, x) eine stetige Abbildung.
Wir nennen f lokal Lipschitz stetig in x, falls für jeden Punkt (t, x) ∈ U eine Umgebung
V ⊆ U und ein L > 0 existiert mit

|f(s, x1)− f(s, x2)| ≤ L|x1 − x2| für alle (s, x1), (s, x2) ∈ V .

Satz 7.4. Sei U ⊆ R× RN und f : U → RN eine stetige Abbildung derart, dass gilt:

(a) Für alle (t, x) ∈ U ist die Funktion y 7→ f(t, y) in y differenzierbar mit Ableitung
∂yf(t, y) ∈ L(RN).

(b) Die Abbildung ∂yf : U → L(RN), (t, y) 7→ ∂yf(t, y) ist stetig.

Dann ist f lokal Lipschitz stetig in x für alle (t, x) ∈ U .

Beweis. Übung!

Bemerkung 7.5. Die Bedingungen (a) und (b) von Satz 7.4 sind insbesondere dann
erfüllt, wenn f ∈ C1(U,RN) ist.

7.1 Existenz und Eindeutigkeit
Ein wichtiges technisches Hilfsmittel ist das

Lemma 7.6 (Lemma von Gronwall). Sei J ein Intervall mit t0 ∈ J , und seien α, β ≥ 0
und u ∈ C(J, [0,∞)). Falls gilt

(7.3) u(t) ≤ α + β

∣∣∣∣∫ t

t0

u(s) ds
∣∣∣∣ für alle t ∈ J,

dann folgt

(7.4) u(t) ≤ αeβ|t−t0| für alle t ∈ J.
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Beweis. Zunächst seien t0 = 0 und t ≥ 0. Wir definieren ϕ(t) := β
∫ t

0 u(s) ds. Die
Ungleichung (7.3) liefert

(7.5) ϕ̇(t) = βu(t) ≤ αβ + βϕ(t).

Nach Multiplikation dieser Ungleichung mit e−βt erhalten wir

d
dt(e

−βtϕ(t)) = e−βtϕ̇(t)− βe−βtϕ(t) ≤ e−βtαβ.

Integrieren über [0, t] liefert wegen ϕ(0) = 0:

e−βtϕ(t) ≤ α(1− e−βt),

und daher mit (7.3)

u(t) ≤ α + ϕ(t) ≤ α(1 + eβt − 1) = αeβt,

also (7.4). Der Beweis für t < 0 geht analog.
Der allgemeine Fall folgt mit der Substitution v(t) := u(t0 + t) für t ∈ J − t0 aus dem

Spezialfall.

Seien nun U ⊆ R × RN offen sowie f : U → RN stetig, und lokal Lipschitzstetig im
zweiten Argument. Ferner sei (t0, u0) ∈ U . Wir betrachten die Differentialgleichung

(7.6)
{
u̇(t) = f(t, u(t))
u(t0) = u0.

Lemma 7.7 (Eindeutigkeit). Seien J1 und J2 offene Intervalle mit t0 ∈ J1 ∩ J2. Falls
ui jeweils eine Lösung von (7.6) in Ji ist, i = 1, 2, dann folgt u1 ≡ u2 in J1 ∩ J2.

Beweis. Sei I ⊆ J1 ∩ J2 ein kompaktes Intervall mit t0 ∈ I. Die Stetigkeit von ui zeigt,
dass die Vereinigung K der Graphen von u1 und u2 mit jeweils dem Definitionsbereich I
kompakt ist. Daher existiertM ≥ 0, so dass |f(t, y)−f(t, z)| ≤M |y−z| für (t, y), (t, z) ∈
K gilt. Es folgt für t ≥ t0:

|u1(t)− u2(t)| ≤
∫ t

t0

|f(s, u1(s))− f(s, u2(s))| ds ≤M

∫ t

t0

|u1(s)− u2(s)| ds.

Das Lemma von Gronwall, Lemma 7.6, liefert nun |u1(t)−u2(t)| = 0 für alle t ∈ I, t ≥ t0.
Der Fall t ≤ t0 wird analog behandelt. Da I ⊆ J1 ∩ J2 beliebig war, gilt u1 ≡ u2 in ganz
J1 ∩ J2.

Lemma 7.8 (Lokale Existenz). Es gibt ε > 0, so dass (7.6) in [t0− ε, t0 + ε] eine Lösung
besitzt.
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Beweis. Wir wählen R, ε1 > 0 so, dass f in K := [t0−ε1, t0+ε1]×BR(u0) ⊆ U im zweiten
Argument Lipschitzstetig ist, mit einer Lipschitzkonstante L. Seien M := maxK |f | und
ε := min{R/M, 1/(2L), ε1}. Für J := [t0 − ε, t0 + ε] betrachten wir den Banachraum
F := C(J,RN ) mit ‖u‖F := maxt∈J |u(t)|. Wir betrachten u0 als die konstante Abbildung
t 7→ u0, ein Element von F , und setzen B := BR(u0). Für u ∈ B und t ∈ J gilt dann mit
der Standardabschätzung ∣∣∣∣∫ t

t0

f(s, u(s)) ds
∣∣∣∣ ≤ εM ≤ R.

Wir können also eine Abbildung Λ: B → B durch

Λ(u)(t) := u0 +
∫ t

t0

f(s, u(s)) ds

definieren. Wir zeigen, dass Λ einen Fixpunkt, also wegen Bemerkung 7.2(c) eine Lösung
von (7.6) besitzt.

Für u1, u2 ∈ B gilt

|Λ(u1)(t)− Λ(u2)(t)| =
∣∣∣∣∫ t

t0

(
f(s, u1(s))− f(s, u2(s))

)
ds
∣∣∣∣

≤ εL‖u1 − u2‖F ≤
1
2‖u1 − u2‖F ,

also ‖Λ(u1) − Λ(u2)‖F ≤ 1
2‖u1 − u2‖F . Demnach ist Λ eine Kontraktion und der Fix-

punktsatz von Banach liefert die Behauptung.

Bemerkung 7.9. Für die Fortsetzung von Lösungen benötigen wir eine Konsequenz des
Mittelwertsatzes: Seien a < b < c, g ∈ C([a, b]) differenzierbar in [a, b) und h ∈ C([b, c])
differenzierbar in (b, c]. Ferner gelte, dass die Grenzwerte α := limt→b− g

′(t) und β :=
limt→b+ h

′(t) existieren. Dann sind g und h in b (einseitig) differenzierbar mit g′(b) = α
und h′(b) = β. Gilt zusätzlich g(b) = h(b) und α = β, dann ist die zusammengesetzte
Funktion

t 7→

{
g(t), t ∈ [a, b],
h(t), t ∈ [b, c],

in [a, c] differenzierbar, mit Ableitung α = β in b. Dieses Resultat kann auch auf die
Koordinaten von Funktionen mit Werten in RN angewendet werden.

Das nächste Resultat nennt man den globalen Existenz- und Eindeutigkeitssatz von
Picard-Lindelöf:

Satz 7.10. Es gibt T+ = T+(t0, u0) ∈ (t0,∞] und T− = T−(t0, u0) ∈ [−∞, t0), so dass
das maximale Existenzintervall (T−, T+) das größte Intervall ist, auf dem eine Lösung u
von (7.6) existiert, die maximale Lösung. Diese Lösung ist eindeutig bestimmt, und alle
Lösungen von (7.6) in Teilintervallen, die t0 enthalten, sind Einschränkungen von u.
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Beweis. Wegen Lemma 7.8 ist

T+ := sup{T > t0 | es gibt eine Lösung von (7.6) in [t0, T )}

größer als t0 (∞ ist möglich). T− wird analog definiert. Wir konstruieren eine eindeutige
Lösung u auf (T−, T+): Sei t ∈ (T−, T+). Dann existieren T− < a < t0 < b < T+ mit
t ∈ (a, b). Aus der Definition von T− und T+ folgt (mit Hilfe von Bemerkung 7.9 für den
Punkt t0), dass eine Lösung ua,b von (7.6) in (a, b) existiert. Wir können u(t) := ua,b(t)
setzen, weil dieser Wert wegen Lemma 7.7 nicht von der Wahl geeigneter a und b abhängt.
Es ist klar, dass u die verlangten Eigenschaften hat.
Es fehlt nur noch zu zeigen, dass (T−, T+) das maximale Intervall ist, auf dem eine

Lösung existiert. Im Fall T+ = ∞ und T− = −∞ ist dies klar. Wir untersuchen nur
den weiteren Fall T− = −∞ und T+ < ∞, die anderen Fälle behandelt man analog.
Angenommen, es gäbe eine Lösung u auf einem Intervall, das echt größer ist als (T−, T+).
Nach Definition von T+ kann das nur das Intervall (T−, T+] sein. Dann ist u also stetig
differenzierbar nach T+ fortsetzbar und es gilt (T+, u(T+)) ∈ U . Dann gibt es nach
Lemma 7.8 eine Lösung v der Differentialgleichung mit dem Anfangswert (T+, u(T+)) in
einem Intervall (T+ − ε, T+ + ε) mit ε > 0. Mit Bemerkung 7.9 folgt, dass die Funktion

w(t) :=
{
u(t) t ∈ [t0, T+]
v(t) t ∈ (T+, T+ + ε)

eine Lösung von (7.6) in [t0, T+ + ε) darstellt, im Widerspruch zur Definition von T+.
Dies zeigt, dass keine Lösung auf (T−, T+] existiert.

Korollar 7.11. Sei G+ der Graph der Einschränkung der eindeutigen maximalen Lösung
u von (7.6) auf [t0, T+). Dann ist G+ keine kompakte Teilmenge von U . Es tritt genau
eine der folgenden Möglichkeiten ein:

(i) T+ =∞;

(ii) T+ <∞ und limt→T+|u(t)| =∞;

(iii) T+ <∞ und lim inft→T+ dist((t, u(t)), ∂U) = 0.

Analoge Aussagen gelten auf (T−, t0]. Man sagt auch: „u verläuft von Rand zu Rand“.

Beweis. Angenommen, G+ wäre eine kompakte Teilmenge von U . Dann ist M :=
maxG+|f | <∞ und daher |u̇| ≤M für t ∈ [t0, T+). Demnach ist u dort Lipschitzstetig
und besitzt eine stetige Fortsetzung nach T+ (Übung!) mit (T+, u(T+)) ∈ U . Wegen
Bemerkung 7.2(c) ist u dann eine Lösung auf [t0, T+]. Widerspruch zur Maximalität!
Das beweist die erste Aussage.

Ist G+ nicht kompakt und T+ <∞, dann muss (ii) gelten. Ist G+ kompakt aber keine
Teilmenge von U , dann folgt T+ <∞, G+ ∩ ∂U 6= ∅ und daher (iii).
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Proposition 7.12. Unter den Bedingungen für Satz 7.10 und im Fall U := I × RN für
ein offenes Intervall I mit t0 ∈ I nehmen wir zusätzlich an, dass f im zweiten Argument
linear beschränkt ist, d.h. dass gilt

(7.7) C := sup
(t,x)∈I×RN

|f(t, x)|
1 + |x| <∞.

Dann ist I das maximale Existenzintervall für (7.6).

Beweis. Sei I = (a, b) mit a ∈ [−∞,∞) und b ∈ (−∞,∞]. Unter der Annahme T+ < b
erhalten wir |f(t, x)| ≤ C+C|x| für x ∈ RN und t ∈ [t0, T+) und daher für die Maximale
Lösung u:

|u(t)| ≤ |u0|+
∫ t

t0

|f(s, u(s))| ds ≤ |u0|+ C(T+ − t0) + C

∫ t

t0

|u(s)| ds.

Das Lemma von Gronwall, Lemma 7.6, liefert, dass |u(t)| in [t0, T+) beschränkt ist. Nach
Korollar 7.11 muss also lim inft→T+ dist((t, u(t)), ∂U) = 0 gelten. Andererseits gilt aber
dist((t, u(t)), ∂U) ≥ min{b− T+, t0− a} > 0 für t ∈ [t0, T+). Widerspruch! Es muss also
T+ = b gelten. Analog zeigt man T− = a.

7.2 Explizite Lösungen spezieller Differentialgleichungen
Im Folgenden betrachten wir häufig autonome Differentialgleichungen, d.h. Gleichungen
der Form u̇ = f(u). Ist u eine Lösung des Anfangswertproblems u̇ = f(u), u(t0) = u0, so
ist u(t+ t0) eine Lösung des Anfangswertproblems u̇ = f(u), u(0) = u0. Demnach genügt
es für autonome Differentialgleichungen stets den AnfangsZeitpunkt t0 = 0 zu betrachten.

7.2.1 Getrennte Variablen
Seien g : I1 → R, f : I2 → R stetige Abbildungen. Wir suchen einen expliziten Ausdruck
für die Lösung des Anfangswertproblems

(7.8) u̇ = f(u)g(t), u(t0) = u0,

für (t0, u0) ∈ I1×I2. Ist f(u0) = 0, so ist u(t) ≡ u0 eine Lösung von (7.8). Ist andererseits
f(u0) 6= 0, dann existiert aufgrund der Stetigkeit von f eine Lösung u : I ⊆ I1 → R von
(7.8) mit f(u(t)) 6= 0 für t ∈ I. Durch Umstellen und Integrieren nach t erhalten wir mit
einer Substitution ∫ u

u0

1
f(v) dv =

∫ t

t0

u̇(s)
f(u(s)) ds =

∫ t

t0

g(s) ds.

Können die Integrationen explizit durchgeführt und danach nach u aufgelöst werden,
dann erhalten wir eine explizite Darstellung für u.
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Beispiel 7.13.

(a) Sei I ⊆ R ein offenes Intervall und p : I → R stetig. Dann hat die (eindimensionale)
homogene Differentialgleichung u̇ + p(t)u = 0, u(t0) = u0, für jedes u0 ∈ R eine
eindeutig bestimmte Lösung in I, nach Proposition 7.12, siehe auch Abschnitt 7.2.3.
Ist u0 = 0, dann ist u ≡ 0 die gesuchte Lösung, und ist u0 6= 0, so muss wegen der
Eindeutigkeit auch u(t) 6= 0 für alle t ∈ I gelten. Aus dem Zwischenwertsatz folgt
wegen wegen der Stetigkeit von u, dass u(t) immer dasselbe Vorzeichen wie u0 hat.
Wir erhalten eine (fast) explizite Darstellung von u durch Integrieren und Auflösen
(für u0 > 0):

log(u)− log(u0) =
∫ u

u0

1
v

dv = −
∫ t

t0

p(s) ds, also u(t) = u0e−
∫ t
t0
p(s) ds

.

Analog gilt u(t) = u0 exp
(
−
∫ t
t0
p(s) ds

)
für u0 < 0.

(b) Betrachte u̇ = u2 mit u(0) = u0. Da u ≡ 0 die Gleichung für u0 = 0 löst, ist eine
Lösung mit u0 > 0 ebenfalls stets positiv und wir erhalten

t =
∫ t

0
1 ds =

∫ u

u0

1
v2 dv = −1

u
+ 1
u0
,

also u(t) = ( 1
u0
− t)−1 = u0

1−u0t
. Das maximale Existenzintervall ist also (−∞, 1

u0
).

7.2.2 Exakte Differentialgleichungen
Eine exakte Differentialgleichung ist eine Gleichung der Form

(7.9) M(t, u) +N(t, u)u̇ = 0,

wobeiM,N : U ⊆ R2 → R zwei stetige Abbildungen sind, so dass (MN ) ein Gradientenfeld
ist. Sei (t0, u0) ∈ U so, dass N(t0, u0) 6= 0 gilt. Dann besitzt das zugehörige AWP nach
Satz 7.10 eine Lösung u. Ist Ψ ein Potential von (MN ), dann gilt d

dtΨ(t, u(t)) = 0 wegen
(7.9), d.h. es existiert eine KonstanteK ∈ Rmit Ψ(t, u(t)) = K für alle t nahe bei t0. Diese
berechnet man mit der Anfangsbedingung: K = Ψ(t0, u0). Die Gleichung Ψ(t, u(t)) = K
liefert eine explizite Darstellung für u, falls sie sich nach u auflösen lässt. Falls nicht,
dann erhält man zumindest eine implizite Darstellung des Trägers der Lösungskurve
(t, u(t)) als die Menge Ψ−1(K).

Sind M und N stetig differenzierbar und ist U ein Sterngebiet, dann ist (7.9) nach
Mathe 2 (Satz 5.107) genau dann exakt, wenn ∂uM = ∂tN überall in U gilt. So kann
man in der Regel die Exaktheit prüfen.
Im Falle, dass die Differentialgleichung (7.9) exakt ist, erhalten wir Ψ durch unbe-

stimmte Integration von M bezüglich t und von N bezüglich u und einem abschließenden
Vergleich der jeweils von der anderen Variablen abhängigen Integrationskonstanten.
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Beispiel 7.14. Betrachte die Gleichung

(3u+ et) + (3t+ cos(u))u̇ = 0.

Dann ist M(t, u) := 3u+ et und N(t, u) := 3t+ cos(u). Dabei gilt ∂uM = 3 = ∂tN , d.h.
die Differentialgleichung ist exakt.

(i) Integrieren von M nach t liefert

Ψ(t, u) =
∫ t

(3u+ et) dt = 3ut+ et + g(u).

(ii) Integrieren von N nach u liefert

Ψ(t, u) =
∫ u

(3t+ cos(u)) du = 3tu+ sin(u) + h(t).

(iii) Vergleichen liefert das Potential Ψ(t, u) = 3tu+et+sin u. Entlang der Lösungskurve
gilt Ψ(t, u) = K für eine Konstante K ∈ R, die mit Hilfe der Anfangsbedingungen
ermittelt werden kann.

Im Falle, dass (7.9) nicht exakt ist, kann die Gleichung häufig „exakt gemacht werden“.
Hierfür multiplizieren wir wir (7.9) mit einem geeigneten Integrationsfaktor µ : U → R,
so dass µ 6= 0 in U gilt und so dass

(7.10) µ(t, u)M(t, u) + µ(t, u)N(t, u)u̇ = 0

exakt ist. Diese Gleichung ist wegen µ 6= 0 äquivalent zu (7.9), d.h. hier, dass die Lösung
u einer Gleichung auch die andere Gleichung löst. Für stetig differenzierbare M,N, µ und
ein Sterngebiet U ist (7.10) genau dann exakt, wenn

∂u(µM) = ∂t(µN)

gilt, d.h. wenn µ eine Lösung der partiellen Differentialgleichung

M∂uµ−N∂tµ+ (∂uM − ∂tN)µ = 0

ist. Im Allgemeinen ist diese Gleichung nicht einfach zu lösen. Wenn allerdings

1
M

(∂uM − ∂tN)

unabhängig von t ist, dann ist auch µ unabhängig von t, und somit ist nur noch die
gewöhnliche lineare Differentialgleichung erster Ordnung

µ′ + 1
M

(∂uM − ∂tN)µ = 0

zu lösen um µ zu bestimmen. Analog bestimmt man unter Umständen einen Multiplikator
µ, der von u unabhängig ist.
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Beispiel 7.15. Wir betrachten die Differentialgleichung tu+ t2u̇ = 0. In diesem Fall ist
M(t, u) = tu und N(t, u) = t2 und es gilt

∂uM = t 6= ∂tN = 2t.

Damit ist die Integrabilitätsbedingung nicht erfüllt. Jedoch gilt
1
M

(∂uM − ∂tN) = 1
ut

(t− 2t) = −1
u
.

Die Differentialgleichung für µ, die es zu lösen gilt, ist demnach

µ′ − 1
u
µ = 0,

welche die Lösung µ(u) = u hat. Durch Multiplizieren der Differentialgleichung für u mit
µ(u) = u erhalten wir die exakte Differentialgleichung

tu2 + t2uu̇ = 0.

Es gilt:

(i) Integrieren von uM nach t liefert

Ψ(t, u) =
∫ t

tu2 dt = 1
2t

2u2 + g(u)

(ii) Integrieren von uN nach u liefert

Ψ(t, u) =
∫ u

t2u du = 1
2t

2u2 + h(t)

(iii) Vergleichen liefert das Potential Ψ(t, u) = 1
2t

2u2. Und somit kann eine explizite
Lösung der Gleichung mit Hilfe einer Fallunterscheidung abhängig vom Anfangswert
gefunden werden.

7.2.3 Lineare Differentialgleichungen
In Mathe 2 hatten wir bereits gesehen, dass es für A ∈ RN×N eine Lösung der homogenen
Differentialgleichung

u̇ = Au, u(0) = u0 ∈ RN

gibt, welche durch u(t) = eAtu0 gegeben ist. Wegen Satz 7.10 ist diese Lösung eindeutig
bestimmt. Im Folgenden werden wir nicht-autonome lineare Differentialgleichungen, d.h.
wo A = A(t) von t abhängt und inhomogene lineare Differentialgleichungen, d.h. vom
Typ u̇ = A(t)u+ q(t) mit q 6= 0, näher untersuchen.

Zunächst betrachten wir den Fall N = 1 und die nicht-autonome inhomogene lineare
Differentialgleichung

(7.11) u̇+ p(t)u = q(t),
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wo p, q : I → R auf dem offenen Intervall I stetige Funktionen sind, und wir betrachten
(t0, u0) ∈ U := I × R. Wir setzen f(t, x) := q(t)− p(t)x. Sei J ein beschränktes offenes
Intervall mit t0 ∈ J und J ⊆ I. Dann existiert C := max{maxJ |p|, maxJ |q|}. Es folgt

|f(t, x)| ≤ C(1 + |x|) für alle (t, x) ∈ J × R.

Proposition 7.12 liefert also, dass u in J existiert. Da J mit obigen Eigenschaften beliebig
gewählt war, existiert u in ganz I.
Wir setzen r(t) :=

∫ t
t0
p. Für q ≡ 0, also für die homogene Gleichung, liefert Bei-

spiel 7.13(b) u(t) = u0e−r(t). Um eine Lösung für das inhomogene AWP zu finden, ist die
Idee, statt der Konstanten u0 in der homogenen Lösung einen zeitabhängigen Faktor zu
verwenden, also

u(t) = C(t)e−r(t)

als Ansatz zu nehmen. Man spricht daher von der Methode der Variation der Konstanten.
Ist dieser Ansatz eine Lösung, so gilt notwendig wegen ṙ = p:

q = u̇+ pu = e−r
(
Ċ − Cp+ Cp

)
= e−rĊ

und C(t0) = u0. Nach Umstellen und Integrieren erhalten wir also

C(t) = u0 +
∫ t

t0

qer

und insgesamt

u =
(
u0 +

∫ t

t0

qer
)

e−r.

Man prüft leicht nach, dass dies andererseits wirklich eine Lösung des AWP von (7.11)
ist. Oft formuliert man diesen Sachverhalt so: Sei

up =
(∫ t

qer
)

e−r,

eine partikuläre Lösung von (7.11) (also einfach irgendeine Lösung), definiert mit einer
beliebigen Stammfunktion von qer. Dann erhält man alle Lösungen von (7.11) in der
Form

u = ae−r + up,

also als ein Vielfaches der Lösung der homogenen Gleichung plus der partiku-
lären Lösung. Die konstante a wählt man so, dass die vorgegebenen Anfangswerte
angenommen werden.
Nun betrachten wir den allgemeinen Fall N ∈ N und nehmen an, dass I ein offenes

Intervall ist und dass A : I → RN×N und q : I → RN stetig sind. Wie zuvor zeigt man
mit Proposition 7.12, dass dann das Anfangswertproblem

(7.12) u̇ = A(t)u+ q(t), u(t0) = u0,
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für (t0, u0) ∈ I×RN eine eindeutige Lösung besitzt, die auf ganz I existiert. Im homogenen
Fall q ≡ 0 ist die Abbildung RN → C(I,RN), welche für festes t0 jedem Anfangswert u0
die eindeutige Lösung von (7.12) zuordnet, offensichtlich linear und injektiv. Daher ist
der lineare Raum der Lösungen von

(7.13) u̇ = A(t)u

N -dimensional. Sei U : I → RN×N eine Matrixfunktion, deren Spalten aus Lösungen von
(7.13) bestehen, also eine Lösung der Matrixgleichung

(7.14) U̇ = A(t)U.

Die Funktion W (t) := det(U(t)) heißt dann Wronskideterminante von U . Man kann
zeigen, dass W die Differentialgleichung Ẇ = Spur(A(t))W erfüllt, dass also wegen der
Betrachtungen im Fall N = 1

W (t) = W (t0) exp
(∫ t

t0

Spur(A(s)) ds
)

gilt. Insbesondere istW (t) 6= 0 für alle t ∈ I genau dann, wennW (t0) 6= 0 gilt, in anderen
Worten: U(t) ist invertierbar für alle t ∈ I genau dann, wenn U(t0) invertierbar ist. In
diesem Fall nennt man U ein Fundamentalsystem von (7.13). Wählt man U so, dass
U(t0) = EN (Einheitsmatrix in RN) gilt (ersetzt man also U durch UU(t0)−1), dann
heißt U auch kanonisches Fundamentalsystem. Die Lösung von (7.13) mit Anfangswert
(t0, u0) ist dann durch U(t)u0 gegeben. Im Allgemeinen ist die Bestimmung eines Fun-
damentalsystems schwierig. Kennt man allerdings eine Lösung von (7.13), dann kann
dieses Problem mit dem Reduktionsverfahren von d’Alembert auf N − 1 Dimensionen
reduziert werden.
Um das Fundamentalsystem etA für konstantes A ∈ RN×N zu berechnen, geht man

wie folgt vor: Seien λk ∈ C die Eigenwerte von A mit (algebraischen) Vielfachheiten
`k ∈ N. Dort, wo im Folgenden komplexwertige Lösungen entstehen, sind jeweils Real-
und Imaginärteil reellwertige Lösungen, weil mit λk immer auch λk ein Eigenwert ist.

• Existieren `k linear unabhängige Eigenvektoren v1, . . . , v`k ∈ CN zu λk, dann sind
vjeλkt, k = 1, 2, . . . , `k, linear unabhängige Lösungen.

• Sei andernfalls v ein Eigenvektor, so dass (A− λk)w = v für ein w gilt. Dann ist
eλkt(tv+w) eine Lösung. Falls (A−λk)x = w für ein x gilt, dann ist eλkt(1

2t
2v+tw+x)

eine Lösung, usw. Auf diese Art und Weise erhält man `k linear unabhängige
Lösungen (indem man alle Eigenvektoren so verwendet).

Siehe [16, 21, 36] für eine ausführliche Beschreibung.
Für das inhomogene lineare Anfangswertproblem (7.12) liefert die Idee der Variation

der Konstanten die Lösungsformel

(7.15) u(t) = U(t)
(
u0 +

∫ t

t0

U(s)−1q(s) ds
)

103



wobei U das kanonische Fundamentalsystem von (7.13) sei. Im Spezialfall, das die
Matrixfunktion A konstant ist, ergibt sich für die Lösung

(7.16) u(t) = etAu0 +
∫ t

t0

e(t−s)Aq(s) ds.

7.3 Skalare Differentialgleichungen höherer Ordnung
Wir betrachten für n ∈ N, U ⊆ R × Rn offen und f : U → R stetig die (skalare)
Differentialgleichung n-ter Ordnung

(7.17) u(n) = f(t, u, u̇, . . . , u(n−1))

mit dem Anfangswert

(7.18) (u, u̇, . . . , u(n−1))(t0) = u0 := (c0, c1, . . . , cn−1) ∈ Rn.

Wir definieren f̃ : U → Rn durch

f̃(t, x) :=


x2
x3
...
xn

f(t, x1, x2, . . . , xn)

 .

Satz 7.16 (Reduktionsprinzip). Eine Funktion u ist genau dann eine Lösung von (7.17),
wenn

(7.19) v :=


u
u̇
ü
...

u(n−1)


eine Lösung des Systems von Differentialgleichungen erster Ordnung

(7.20) v̇ = f̃(t, v)

ist.

Beweis. Dies folgt durch komponentenweise Betrachtung von (7.20).

Satz 7.17 (Existenz- und Eindeutigkeit). Sei U ⊆ R× Rn offen und f : U → R stetig,
und lokal Lipschitzstetig in den n letzten Argumenten. Dann hat das Anfangswertproblem
(7.17) und (7.18) eine maximale eindeutige Lösung.

Beweis. Folgt sofort aus den Sätzen 7.16 und 7.10.
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7.3.1 Lineare Differentialgleichungen höherer Ordnung
Wir betrachten zunächst die spezielle inhomogene lineare Differentialgleichung mit kon-
stanten Koeffizienten

(7.21) Lu := u(n) + an−1u
(n−1) + · · ·+ a1u̇+ a0u = Q(t)ect

mit dem Anfangswert (7.18) für a0, . . . , an−1 ∈ R, und mit einem Polynom Q mit reellen
Koeffizienten und c ∈ C (dies erlaubt es, Inhomogenitäten mit Faktor cos und sin als
Real- und Imaginärteil der unten konstruierten partikulären Lösung zu behandeln). Wie
in Abschnitt 7.2.3 gezeigt existiert dann die eindeutige Lösung des Anfangswertproblems
in ganz R. Die homogene Gleichung hat nach dem Reduktionsprinzip für v wie in (7.19)
die Form v̇ = Av, mit

A =



0 1
0 1

. . . . . .

−a0 −a1 · · · −an−1


,

also Spur(A) = −an−1. Ein Fundamentalsystem der homogenen Gleichung hat dann die
Form 

u1 u2 · · · un
u̇1 u̇2 · · · u̇n
... ... ...

u
(n−1)
1 u

(n−1)
2 · · · u

(n−1)
n−1


und die zugehörige Wronskideterminante W erfüllt

(7.22) Ẇ = −an−1W.

Sei P (λ) := λn + an−1λ
n−1 + · · ·+ a1λ+ a0 das charakteristische Polynom von L mit m

komplexen Nullstellen λk der Vielfachheit `k. Aus dem Reduktionsprinzip, Satz 7.16, und
der Lösung von linearen Systemen erster Ordnung ergibt sich als Fundamentalsystem

(7.23) {tjeλkt | k = 1, 2, . . . ,m, j = 0, 1, . . . , `k − 1}.

Um ein reelles Fundamentalsystem zu erhalten verwendet man wieder jeweils Real- und
Imaginärteil.
Um eine partikuläre Lösung von (7.21) zu erhalten macht man den Ansatz

u = t`(b0 + b1t+ · · ·+ brt
r)ect,

wo r ∈ N0 der Grad von Q ist und b0, . . . , br ∈ R. Man wählt ` = 0, falls P (c) 6= 0 gilt und
` die Vielfachheit der Nullstelle, falls P (c) = 0 gilt. Für eine Summe von Inhomogenitäten
berechnet man die partikulären Lösungen getrennt und summiert Sie dann auf.
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Die allgemeine Lösung von (7.21) ist dann eine Linearkombination der Funktionen in
(7.23) (an die Anfangsbedingung angepasst) plus die partikuläre Lösung.

Wir betrachten jetzt noch lineare Differentialgleichungen zweiter Ordnung mit zeitab-
hängigen Koeffizienten:

(7.24) ü+ a1(t)u̇+ a0(t)u = q(t).

Die Funktionen a0, a1, q seien auf einem offenen Intervall I stetig. Ist eine Lösung v der
homogenen Gleichung (q ≡ 0) bekannt (z.B. erraten oder vorgegeben), so ist der Ansatz
von d’Alembert hier u = vw, um eine weitere, linear unabhängige, homogene Lösung zu
finden. Für die zugehörige Wronskideterminante gilt

W (t) = det
(
v vw
v̇ v̇w + vẇ

)
= v2ẇ,

also ẇ = W/v2. Andererseits können wir W aus Ẇ = −a1(t)W bestimmen. Dann ist
w eine Stammfunktion von W/v2 und wir erhalten das Fundamentalsystem {v, vw} =
{u1, u2}. Eine partikuläre Lösung erhält man jetzt wieder mit der Methode der Variation
der Konstanten. Konkret macht man den Ansatz

u = c1(t)u1 + c2(t)u2.

Dieser führt auf
ċ1 = −q(t)u2

W (t) und ċ2 = q(t)u1

W (t) ,

so dass man c1 und c2 durch Integration erhält.

7.4 Qualitative Theorie nichtlinearer Systeme
Wir betrachten in diesem Abschnitt meist autonome Differentialgleichungen, d.h. Diffe-
rentialgleichungen der Form

(7.25) u̇ = f(u)

mit f : D → RN lokal Lipschitzstetig und D ⊆ RN offen. Sei

U :=
{

(t, x) ∈ R×D
∣∣ t ∈ (T−(x), T+(x)

)}
.

Wir definieren den Fluss ϕ : U → D von (7.25) dadurch, dass für x ∈ D die Funktion(
T−(x), T+(x)

)
→ D mit t 7→ ϕ(t, x) nach Satz 7.10 die maximale Lösung des Anfangs-

wertproblems (7.25) mit u(0) = x sei. Wir schreiben auch ϕt(x) := ϕ(t, x). In diesem
Zusammenhang heißt RN auch Phasenraum. Gilt (T−(x), T+(x)) = R für alle x ∈ D,
dann ist U = R×D und wir sagen, ϕ sei ein globaler Fluss. Dies ist nach Proposition 7.12
zum Beispiel der Fall, wenn D = RN gilt und f linear beschränkt ist.
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Bemerkung 7.18. Für den Fluss ϕ einer Differentialgleichung gilt stets

ϕ0 = idRN ,

da ja ϕ( · , x) die Lösung mit Anfangswert x ist, also ϕ(0, x) = x gilt. Aus der Existenz
und Eindeutigkeit der Lösung und aus Bemerkung 7.9 folgt ferner

ϕ(t, ϕ(s, x)) = ϕ(s+ t, x) falls (s, x), (s+ t, x) ∈ U.

Im Falle der globalen Existenz U = R× RN gilt also ϕt ◦ ϕs = ϕs+t.

Satz 7.19. Die Menge U ist offen und ϕ ist lokal Lipschitzstetig.

Beweis. Wir beweisen dies nur im Fall D = RN und f Lipschitzstetig, mit Lipschitzkon-
stante M . In diesem Fall ist f linear beschränkt, denn |f(x)| ≤ |f(x)− f(0)|+ |f(0)| ≤
M |x− 0|+ |f(0)|. Wegen Satz 7.10 ist der Fluss also global, d.h. U = R× RN .
Sei R > 0. Für (t, x1), (t, x2) ∈ [−R,R]× BR(0) folgt aus Bemerkung 7.2(c) im Fall

t ≥ 0

|ϕ(t, x1)− ϕ(t, x2)| ≤ |x1 − x2|+
∫ t

0
|f(ϕ(s, x1))− f(ϕ(s, x2))| ds

≤ |x1 − x2|+M

∫ t

0
|ϕ(s, x1)− ϕ(s, x2)| ds.

Das Lemma von Gronwall liefert in dieser Situation also

(7.26) |ϕ(t, x1)− ϕ(t, x2)| ≤ eMt|x1 − x2| ≤ eMR|x1 − x2|.

Der Fall t < 0 geht analog und liefert dieselbe Abschätzung.
Wir betrachten die kompakte Menge K := ϕ([−R,R], 0) und setzen L1 := maxK |f |.

Für (t, x) ∈ [−R,R]×BR(0) folgt aus (7.26)

|ϕ(t, x)| ≤ |x|+
∫ t

0
|f(ϕ(s, x))| ds

≤ |x|+
∫ t

0

(
|f(ϕ(s, x))− f(ϕ(s, 0))|+ |f(ϕ(s, 0)︸ ︷︷ ︸

∈K

)|
)

ds

≤ R(1 + L1) +M

∫ t

0
|ϕ(s, x)− ϕ(s, 0)| ds

≤ R(1 + L1) +MeMR

∫ t

0
|x| ds

≤ R(1 + L1) +MeMRR2 =: L2.

Jetzt sei L3 := max{|f(x)| | |x| ≤ L2}. Dann liefert die letzte Ungleichung für (t1, x), (t2, x) ∈
[−R,R]×BR(0) unter der Annahme t1 ≤ t2

(7.27) |ϕ(t1, x)− ϕ(t2, x)| ≤
∫ t2

t1

|f(ϕ(s, x))| ds ≤ L3|t2 − t1|.
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0
(a) a > 0

0
(b) a = 0

0
(c) a < 0

Abbildung 7.1: Richtungsfeld von u̇ = au

Zusammen liefern (7.26) und (7.27), dass ϕ auf [−R,R]×BR(0) Lipschitzstetig ist: Für
(t1, x1), (t2, x2) ∈ [−R,R]×BR(0) gilt nämlich jetzt

|ϕ(t1, x1)− ϕ(t2, x2)| ≤ |ϕ(t1, x1)− ϕ(t1, x2)|+ |ϕ(t1, x2)− ϕ(t2, x2)|
≤ eMR|x1 − x2|+ L3|t1 − t2| ≤ L4|(t1, x1)− (t2, x2)|.

Die letzte Ungleichung folgt aus der Äquivalenz aller Normen in R × RN mit einer
geeigneten Konstante L4. Da R beliebig war, folgt die Behauptung.

Es gibt nun verschiedene Möglichkeiten, sich die Gleichung (7.25) zu veranschauli-
chen. Eine Möglichkeit ist es, das Vektorfeld f im Phasenraum einzuzeichnen. Da eine
Lösungskurve durch x stets der Richtung des Vektors f(x) folgt, spricht man hier vom
Richtungsfeld. Alternativ kann auch die Kurve t 7→ ϕt(x) für verschiedene x im Pha-
senraum eingezeichnet werden. Diese Veranschaulichung wird auch als Phasenporträt
des Flusses bezeichnet und für jedes festes u0 wird die Kurve t 7→ ϕt(u0) als Orbit oder
Trajektorie bezeichnet.
Beispiel 7.20.

(a) Wir betrachten zunächst den einfachen Fall u̇ = au, a ∈ R. Dann ist der Phasenraum
gegeben durch R, siehe Abb. 7.1. Ein Phasenportrait ergibt hier wenig Sinn, da
die Trajektorien einfach Intervalle darstellen und keine interessante Information
enthalten. Sinnvoll wäre hier eher, jeweils den Graphen einer Lösung aufzuzeichnen.

(b) Wir betrachten die Gleichung u̇ = f(u) = 1
2(u − u2). Dann ist der Phasenraum

gegeben durch R, siehe Abb. 7.2.

(c) Wir betrachten v̈ + 2pv̇ + ω2v = 0, ω, p ≥ 0, ω2 + p2 > 0. Mit Satz 7.16 führen wir
dies auf die Gleichung

(7.28) u̇ =
(
u̇1
u̇2

)
=
(

0 1
−ω2 −2p

)(
u1
u2

)
.
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0 1
Graph(f)

Abbildung 7.2: Richtungsfeld von u̇ = f(u) := 1
2(u− u2)

Abbildung 7.3: 0 = p < ω: Richtungsfeld und Phasenportrait

zurück. Der Phasenraum ist dann durch R2 gegeben.
(a) Fall p = 0, keine Dämpfung: Siehe Abb. 7.3.
(b) Fall 0 < p < ω, gedämpfte Schwingung: Siehe Abb. 7.4.
(c) Fall 0 < ω < p, starke Dämpfung: siehe Abb. 7.5.

Wir wollen nun untersuchen, wie die Lösungen langfristig auf Änderungen der An-
fangsbedingung reagieren. Für beschränkte Zeiten zeigt die lokale Lipschitzstetigkeit
des Flusses, dass sich die Trajektorien in stetiger Abhängigkeit von den Anfangswerten
verändern. Interessiert man sich jedoch für (positiv) globale Lösungen, das heißt, Lö-
sungen, die für alle positiven Zeiten existieren, dann ist diese Frage nicht so einfach zu
beantworten und führt uns auf den Begriff der Stabilität:

Definition 7.21. Es sei f ∈ C1([0,∞)× RN ,RN). Wir betrachten die Differentialglei-
chung

(7.29) u̇ = f(t, u).
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Abbildung 7.4: 0 < p < ω: Richtungsfeld und Phasenportrait

Abbildung 7.5: 0 < ω < p: Richtungsfeld und Phasenportrait
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(a) Eine Lösung u von (7.29) auf [0,∞) heißt stabil, wenn es zu jedem ε > 0 ein δ > 0
gibt mit Folgender Eigenschaft: Zu jedem Startwert ũ(0) ∈ RN mit |u(0)− ũ(0)| ≤ δ
existiert eine Lösung ũ von (7.29) auf [0,∞), und es gilt

|u(t)− ũ(t)| ≤ ε für alle t ≥ 0.

(b) Eine Lösung u von (7.29) heißt asymptotisch stabil, wenn sie stabil ist und δ > 0
existiert, so dass für jeden Startwert ũ(0) mit |u(0)− ũ(0)| ≤ δ gilt

(7.30) lim
t→∞
|u(t)− ũ(t)| = 0.

(c) Eine Lösung u heißt instabil, wenn sie nicht stabil ist.

Wir werden uns im Folgenden auf die Stabilitätsuntersuchung von Gleichgewichtslö-
sungen autonomer Differentialgleichungen einschränken. Ist u0 eine asymptotisch stabile
Gleichgewichtslösung, so nennt man u0 auch einen (Punkt-)Attraktor. Durch Betrachtung
von u̇ = f(u− u0) können wir stets u0 = 0 annehmen. Dementsprechend werden wir im
Folgenden stets untersuchen, ob die triviale Lösung stabil, asymptotisch stabil oder
instabil ist.

Beispiel 7.22. Wir betrachten nun die Stabilität einiger Gleichgewichtslösungen aus
Beispiel 7.20.

(a) Für die Gleichung u̇ = au ist u ≡ 0 eine Gleichgewichtslösung (die einzige, falls
a 6= 0). Da ϕt(u) = ueat gilt, folgt

u ≡ 0 ist


stabil, aber nicht asymptotisch stabil für a = 0,
asymptotisch stabil für a < 0,
instabil für a > 0.

(b) Für die Gleichung u̇ = u − u2 sind u ≡ 0 und u ≡ 1 die Gleichgewichtslösungen.
Dabei ist 0 instabil und 1 asymptotisch stabil.

(c) Für die lineare autonome Differentialgleichung 2. Ordnung v̈+2pv̇+ω2v = 0, ω > 0,
p ≥ 0 gilt:
(a) Für p = 0 ist im reduzierten System im R2 die Lösung (0, 0) stabil, aber nicht

asymptotisch stabil.
(b) Für p > 00 ist der Punkt (0, 0) asymptotisch stabil.

7.4.1 Lineare autonome Systeme
Lemma 7.23. Es sei A ∈ Cn×n und es seien λ1, . . . , λn die Eigenwerte von A, gemäß
Vielfachheit mit Mehrfachnennungen. Zu α > γ := maxnj=1 Re(λj) existiert c > 0 mit1

‖eAt‖ ≤ ceαt für alle t ≥ 0.
1Erinnerung: Für eine Matrix B ∈ Cn×n ist ‖B‖ = supv∈RN\{0}

|Bv|
|v| .
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Beweis. Nach Abschnitt 7.2.3 hat das kanonische Fundamentalsystem etA von u̇ = Au
Matrixeinträge (Koordinaten) der Form t 7→

∑n
j=1 eλjtPj(t), wobei Pj : R → C jeweils

ein Polynom vom Grad ≤ n− 1 ist. Es folgt

sup
t≥0

e−αt
∣∣∣∣ n∑
j=1

eλjtPj(t)
∣∣∣∣ ≤ sup

t≥0
e(γ−α)t

n∑
j=1

|Pj(t)| <∞,

wegen γ − α < 0. Die Äquivalenz aller Normen in Cn liefert also mit geeignetem C > 0

sup
t≥0

e−αt‖etA‖ ≤ C sup
t≥0

e−αt‖etA‖∞ <∞.

Hier bedeutet ‖·‖∞ wie immer das Maximum aller Matrixeinträge.

Satz 7.24. Seien A ∈ Cn×n und γ := max{Reλj | λj Eigenwert von A }. Wir betrach-
ten die Gleichung u̇ = Au. Dann gilt

(a) Genau dann ist γ < 0, wenn die triviale Lösung u ≡ 0 asymptotisch stabil ist.

(b) Wenn γ > 0 ist, ist die triviale Lösung u ≡ 0 instabil.

(c) Im Fall γ = 0 ist keine allgemeine Aussage möglich.

Beweis. (a): „⇒“: Falls γ < 0 ist, folgt die asymptotische Stabilität aus Lemma 7.23,
denn jede Lösung lässt sich als u(t) = eAtu(0) darstellen. Ist nämlich α := γ

2 > γ und c
wie in Lemma 7.23, so folgt für |u(0)| ≤ ε

c
:

|u(t)| ≤ ‖eAt‖|u(0)| ≤ ceαt ε
c
≤ eαtε ≤ ε für t ≥ 0,

da α < 0. Insbesondere folgt hieraus limt→0|u(t)| → 0.
(b): Ist λ ein Eigenwert von A mit Reλ > 0 und ist v0 6= 0 ein zugehöriger Eigenvektor,

so folgt für die Lösung v(t) := eλtv0:

lim
t→∞
|v(t)| = lim

t→∞
|v0|eReλt =∞.

Es folgt (b).
(a): „⇐“: Ist γ ≥ 0, so existiert wie im Beweis von (b) eine Lösung v(t) = eλtv0 mit

Reλ = 0 und v0 6= 0. Für diese Lösung gilt v(t) 6→ 0. Es folgt (a).
(c): Für A = ( 0 0

0 0 ) ist die triviale Lösung stabil. Für A = ( 0 1
0 0 ) existiert die Lösung

( t1 ) und somit ist die triviale Lösung instabil. Es folgt (c).

7.4.2 Nichtlineare autonome Systeme
Wir wollen nun die Resultate des vorherigen Abschnitts anwenden, um die Gleichge-
wichtspunkte von (7.25) zu untersuchen. Hierfür sei f ∈ C1(RN ,RN ) mit f(0) = 0. Dann
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besitzt die Gleichung u̇ = f(u) die Gleichgewichtslösung u ≡ 0. Ferner sei A := Df(0)
die Jacobimatrix von f in 0. Nach Definition der Differenzierbarkeit können wir daher

(7.31) f(u) = Au+ g(u) mit lim
u→0

|g(u)|
|u|

= 0

schreiben. Der nächste Satz zeigt, dass die Eigenwerte der Jacobimatrix von f in 0 die
Dynamik des Systems nahe bei 0 bestimmen:

Satz 7.25. Es sei f ∈ C1(RN ,RN) mit f(0) = 0 und A := Df(0), so dass (7.31) für
eine Funktion g gilt. Ferner sei γ := max{Reλ | λ Eigenwert von A}. Dann gilt für die
triviale Lösung u ≡ 0 von u̇ = f(u):

(a) Ist γ < 0, so ist die triviale Lösung asymptotisch stabil.

(b) Ist γ > 0, so ist die triviale Lösung instabil.

(c) Ist γ = 0, so ist keine allgemeine Aussage möglich.

Beweis. Siehe [36, §29].

Bemerkung 7.26. Zu beachten ist, dass im Gegensatz zu Satz 7.24(a) die Aussage von
Satz 7.25(a) keine Äquivalenz liefert. Betrachte hierfür speziell f(x) = − x

|x|e
− 1
x2 , x 6= 0

und f(0) = 0, dann ist f ∈ C∞(R) mit f (k)(0) = 0 für alle k ∈ N0, jedoch ist u ≡ 0
asymptotisch stabil für u̇ = f(u) (s.u.).

Bemerkung 7.27. Beachte, dass die Stabilitätsaussagen aus Satz 7.25 ebenso für
nichttriviale Gleichgewichtslösungen u0 gelten aufgrund der Translation um u0, d.h. die
Stabilität der Gleichgewichtslösung u0 hängt von den Eigenwerten von Df(u0), wie in
Satz 7.25 beschrieben, ab.

Beispiel 7.28. Als eine Anwendung von Satz 7.25 betrachten wir die folgende Lotka-
Volterra Gleichung. Hierbei seien a1, a2, b1, b2 > 0 und wir untersuchen{

u̇1 = −a1u1 + b1u1u2

u̇2 = a2u2 − b2u1u2

Hierbei beschreibt u1 eine Population von Räubern, die mit Rate a1 sterben, wenn sie
nicht genug zu fressen haben und u2 beschreibt die Population von einer Beute, die mit
der Rate a2 wächst. b2 ist die Rate, abhängig von u1 und u2, wie die Räuber die Beute
fressen und b1 ist die Rate, wie dies zum Überleben der Räuber hilft.
Die nichtlineare rechte Seite ist dann

f(u1, u2) =
(
−a1u1 + b1u1u2
a2u2 − b2u1u2

)
mit Df(u1, u2) =

(
−a1 + b1u2 b1u1
−b2u2 a2 − b2u1

)
.

Dabei gilt

f(u1, u2) = 0 ⇔
(
u1
u2

)
∈
{(

0
0

)
,

( a2
b2
a1
b1

)}
.

113



Abbildung 7.6: Beispiel 7.28 mit a1 = b1 = a2 = b2 = 1

Also gilt für die triviale Lösung:

f(0, 0) = 0 und Df(0, 0) =
(
−a1 0

0 a2

)
.

Folglich sind die Eigenwerte von Df(0, 0) die Werte a2,−a1 und da a2 > 0 gilt folgt aus
Satz 7.25, dass die triviale Lösung instabil ist.
Mit u∗ = (a2

b2
, a1
b1

) folgt

f(u∗) = 0 und Df(u∗) =
(

0 b1
a2
b2

−b2
a1
b1

0

)
.

Folglich sind die Eigenwerte von Df(u∗) gegeben durch ±i√a1a2 . Da diese rein imaginär
sind, können wir für diesen Fall aus Satz 7.25 keine Aussage über die Stabilität von u∗
machen. Wir können jedoch zur groben Einschätzung das Richtungsfeld heranziehen,
siehe Abb. 7.6.

114



7.4.3 Die Lyapunovfunktion
Die in Satz 7.25 enthaltene Methode zur Analyse der Gleichgewichtslösungen wird auch
Linearisierung genannt. Im Folgenden wollen wir noch eine weitere solche Methode
betrachten.
Hierfür seien p, ω > 0 und wir betrachten die Schwingung

v̈ + 2pv̇ + ω2v = 0

bzw. das äquivalente System

(7.32)
{
u̇1 = u2,

u̇2 = −2pu2 − ω2u1.

Aus den Abbildungen 7.4 und 7.5 ist anschaulich klar, dass 0 ein asymptotisch stabiler
Gleichgewichtspunkt ist. Dies folgt genauer aus Satz 7.25 und daraus, dass die Eigenwerte
λ = −p ±

√
p2 − ω2 dann negativen Realteil haben. Um die physikalische Stabilität

einzusehen, kann man auch die Energie des schwingenden Teilchens berechnen:

(7.33) E = Ekin + Epot = 1
2u

2
2 + ω2

2 u2
1.

Die Energie hat dabei im Gleichgewichtspunkt ein absolutes Minimum und ist längs der
Trajektorie wegen der Reibung streng monoton fallend:

d
dtE(u1, u2) = u2u̇2 + ω2u1u̇1

(7.32)= u2(−2pu2 − ω2u1) + ω2u1u2 = −2pu2
2 ≤ 0,

und < 0 für u2 6= 0. Folglich ist zu erwarten, dass das schwingende Teilchen gegen die
Ruhelage strebt.

Definition 7.29. Es sei f ∈ C1(Rn,Rn) und es gelte f(u∗) = 0. Eine in einer Umgebung
U von u∗ definierte Funktion E ∈ C1(U) heißt Lyapunovfunktion (für f), falls

(i) E bei u∗ ein striktes globales Minimum besitzt und

(ii) für die Funktion ∂E : u 7→ 〈∇E(u), f(u)〉 ≤ 0 für alle u ∈ U gilt.

Gilt statt (ii) sogar die stärkere Bedingung ∂E(u) < 0 für alle u ∈ U \ {u∗}, so heißt E
strikte Lyapunovfunktion (für f).

Bemerkung 7.30. Die Bedeutung der Funktion ∂E lässt sich wie folgt erklären: Löst u
die Gleichung u̇ = f(u) und existiert eine Lyapunovfunktion für f , so gilt für die zeitliche
Ableitung längs der Trajektorie u in E:

d
dtE(u(t)) = 〈∇E(u(t)), u̇(t)〉 = 〈∇E(u(t)), f(u(t))〉 = ∂E(u(t)).

Die zweite Bedingung der Lyapunovfunktion besagt also, dass E längs der Trajektorie
abnimmt.
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Satz 7.31. Sei f ∈ C1(Rn,Rn) und es gelte f(u∗) = 0. Falls eine es eine Lyapunovfunk-
tion E gibt, ist u∗ ein stabiler Gleichgewichtspunkt der Gleichung u̇ = f(u). Ist E eine
strikte Lyapunovfunktion, so ist u∗ ein asymptotisch stabiler Gleichgewichtspunkt.

Beweis. Siehe z.B. [21, Satz 67.1].

Beispiel 7.32. (a) Für die Gleichung (7.32) ist E(u1, u2) = 1
2u

2
2 + ω2

2 u
2
1 eine Lyapu-

novfunktion.

(b) Bemerkung 7.26 lässt sich zeigen, indem man die Lyapunovfunktion x 7→ x2

betrachtet und dann Satz 7.31 anwendet.

(c) Wir betrachten wieder das Räuber-Beute Modell aus Beispiel 7.28. Wir versuchen
nun eine Lyapunovfunktion in einer Umgebung von u∗ = (a2

b2
, a1
b1

) als

E(u1, u2) = F1(u1) + F2(u2)

anzusetzen. Man erhält dann

∂E(u1, u2) = F ′1(u1)(−a1u1 + b1u1u2) + F ′2(u2)(a2u2 − b2u1u2).

Also ist ∂E(u1, u2) = 0 genau dann, wenn

F ′1(u1) u1

a2 − b2u1
= −F ′2(u2) u2

−a1 + b1u2

gilt. Dies ist zum Beispiel durch

F ′1(u1) = b2 −
a2

u1
, F ′2(u2) = b1 −

a1

u2

erfüllt. Wir wählen also

F1(u1) = b2u1 − a2 log u1

F2(u2) = b1u2 − a1 log u2

E(u1, u2) = b2u1 − a2 log u1 + b1u2 − a1 log u2.

Diese Funktion hat bei u∗ ein lokales Minimum, da ∇E(u∗) = 0 und für die
Hessematrix

HE(u∗) =
(

a2
u2

1
0

0 a1
u2

2

)∣∣∣∣∣
(u=u∗)

=
(

b2
2
a2

0
0 b2

1
a1

)
positiv definit ist. Es folgt mit Satz 7.31, dass u∗ ein stabiler Gleichgewichtspunkt
ist.
Man kann zeigen, dass die Lösungen des Lotka-Volterra-Systems nahe bei u∗
periodisch sind und auf den Kurven mit E(u) = const. verlaufen.
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